cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 34 results. Next

A278767 Expansion of Product_{k>=1} 1/(1 - x^k)^(k*(2*k-1)).

Original entry on oeis.org

1, 1, 7, 22, 71, 206, 616, 1712, 4743, 12677, 33407, 86085, 218677, 546060, 1345840, 3271893, 7861239, 18670881, 43883904, 102112483, 235401947, 537869136, 1218743007, 2739566083, 6111766043, 13536683750, 29775945929, 65065819486, 141285315728, 304935221675, 654318376244, 1396166024244, 2963068779402
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 28 2016

Keywords

Comments

Euler transform of the hexagonal numbers (A000384).

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(add(
          d^2*(2*d-1), d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..35);  # Alois P. Heinz, Dec 02 2016
  • Mathematica
    nmax=32; CoefficientList[Series[Product[1/(1 - x^k)^(k (2 k - 1)), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} 1/(1 - x^k)^(k*(2*k-1)).
a(n) ~ exp(-Zeta'(-1) - Zeta(3)/(2*Pi^2) - 75*Zeta(3)^3/(4*Pi^8) - 15^(5/4)*Zeta(3)^2/(2^(9/4)*Pi^5) * n^(1/4) - sqrt(15/2)*Zeta(3)/Pi^2 * sqrt(n) + 2^(9/4)*Pi/(3^(5/4)*5^(1/4)) * n^(3/4)) / (2^(67/48) * 15^(5/48) * Pi^(1/12) * n^(29/48)). - Vaclav Kotesovec, Dec 02 2016

A278769 Expansion of Product_{k>=1} 1/(1 - x^k)^(k*(5*k-3)/2).

Original entry on oeis.org

1, 1, 8, 26, 88, 269, 843, 2456, 7115, 19892, 54756, 147355, 390517, 1017091, 2612670, 6617641, 16556913, 40933339, 100104289, 242276236, 580718077, 1379161494, 3247074738, 7581837910, 17564867853, 40388447308, 92206496318, 209069338580, 470944571003, 1054178579266, 2345477963043, 5188246121144, 11412352653001
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 28 2016

Keywords

Comments

Euler transform of the heptagonal numbers (A000566).

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=0, 1, add(add(
          d^2*(5*d-3)/2, d=divisors(j))*a(n-j), j=1..n)/n)
        end:
    seq(a(n), n=0..35);  # Alois P. Heinz, Dec 02 2016
  • Mathematica
    nmax=32; CoefficientList[Series[Product[1/(1 - x^k)^(k (5 k - 3)/2), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} 1/(1 - x^k)^(k*(5*k-3)/2).
a(n) ~ exp(-3*Zeta'(-1)/2 - 5*Zeta(3)/(8*Pi^2) - 81*Zeta(3)^3/(2*Pi^8) - 3^(13/4)*Zeta(3)^2/(2^(7/4)*Pi^5) * n^(1/4) - 3^(3/2)*Zeta(3)/(sqrt(2)*Pi^2) * sqrt(n) + 2^(7/4)*Pi/3^(5/4) * n^(3/4)) / (2^(51/32) * 3^(3/32) * Pi^(1/8) * n^(19/32)). - Vaclav Kotesovec, Dec 02 2016

A295179 Expansion of Product_{k>=1} 1/(1 - x^k)^(3*k*(k-1)/2+1).

Original entry on oeis.org

1, 1, 5, 15, 44, 115, 312, 790, 2004, 4908, 11885, 28170, 65987, 152079, 346560, 779808, 1736460, 3825995, 8351733, 18064545, 38747740, 82443251, 174096564, 364991008, 759989218, 1572126699, 3231929735, 6604498620, 13419469596, 27117216441, 54508611399, 109013531864, 216956853105
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 16 2017

Keywords

Comments

Euler transform of the centered triangular numbers (A005448).

Crossrefs

Programs

  • Mathematica
    nmax = 32; CoefficientList[Series[Product[1/(1 - x^k)^(3 k (k - 1)/2 + 1), {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d (3 d (d - 1)/2 + 1), {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 32}]

Formula

G.f.: Product_{k>=1} 1/(1 - x^k)^A005448(k).
a(n) ~ exp(-3*Zeta'(-1)/2 + 7*Zeta(3) / (8*Pi^2) - 225*Zeta(3)^3 / (2*Pi^8) + (Pi / (3*2^(3/4)) - 45*Zeta(3)^2 / (2^(7/4) * Pi^5)) * (5*n)^(1/4) - (3*sqrt(5/2) * Zeta(3) / Pi^2) * sqrt(n) + (2^(7/4)*Pi / (3*5^(1/4))) * n^(3/4)) / (2^(71/32) * 5^(7/32) * Pi^(1/8) * n^(23/32)). - Vaclav Kotesovec, Nov 16 2017

A292387 Expansion of Product_{k>=1} (1 - x^k)^(k*(k+1)*(k+2)/6).

Original entry on oeis.org

1, -1, -4, -6, -4, 19, 60, 131, 149, -4, -572, -1764, -3485, -4716, -2658, 7606, 32944, 77152, 132586, 161275, 75150, -281687, -1111029, -2560293, -4470415, -5922117, -4603551, 3799070, 25573251, 67259095, 130430051, 201158707, 232853019, 124749892, -295134275, -1260897993, -2995361708, -5515840117
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 15 2017

Keywords

Comments

Convolution inverse of A000335 (Euler transform of the tetrahedral numbers).

Crossrefs

Programs

  • Mathematica
    nmax = 37; CoefficientList[Series[Product[(1 - x^k)^(k (k + 1) (k + 2)/6), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} (1 - x^k)^(k*(k+1)*(k+2)/6).

A293551 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of exp(Sum_{j>=1} x^j/(j*(1 - x^j)^k)).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 1, 1, 1, 4, 6, 5, 1, 1, 1, 5, 10, 13, 7, 1, 1, 1, 6, 15, 26, 24, 11, 1, 1, 1, 7, 21, 45, 59, 48, 15, 1, 1, 1, 8, 28, 71, 120, 141, 86, 22, 1, 1, 1, 9, 36, 105, 216, 331, 310, 160, 30, 1, 1, 1, 10, 45, 148, 357, 672, 855, 692, 282, 42, 1, 1, 1, 11, 55, 201, 554, 1232, 1982, 2214, 1483, 500, 56, 1
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 11 2017

Keywords

Comments

A(n,k) is the Euler transform of j -> binomial(j+k-2,k-1) evaluated at n.

Examples

			Square array begins:
1,  1,   1,   1,    1,    1,  ...
1,  1,   1,   1,    1,    1,  ...
1,  2,   3,   4,    5,    6,  ...
1,  3,   6,  10,   15,   21,  ...
1,  5,  13,  26,   45,   71,  ...
1,  7,  24,  59,  120,  216,  ...
		

Crossrefs

Main diagonal gives A293554.
Cf. A007318, A096751 (a similar but different sequence).

Programs

  • Maple
    with(numtheory):
    A:= proc(n, k) option remember; `if`(n=0, 1, add(add(d*
          binomial(d+k-2, k-1), d=divisors(j))*A(n-j, k), j=1..n)/n)
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..14);  # Alois P. Heinz, Oct 17 2017
  • Mathematica
    Table[Function[k, SeriesCoefficient[E^(Sum[x^i/(i (1 - x^i)^k), {i, 1, n}]), {x, 0, n}]][j - n], {j, 0, 12}, {n, 0, j}] // Flatten

Formula

G.f. of column k: exp(Sum_{j>=1} x^j/(j*(1 - x^j)^k)).
For asymptotics of column k see comment from Vaclav Kotesovec in A255965.

A190905 Euler transform of the swinging factorial A056040.

Original entry on oeis.org

1, 1, 3, 9, 18, 60, 117, 371, 747, 2199, 4697, 12735, 28571, 72815, 169176, 412440, 978086, 2316754, 5547293, 12909723, 30966639, 71357601, 170636159, 391242623, 930120982, 2128073530, 5023630830, 11486060090, 26918052717, 61539213693, 143227189518
Offset: 0

Views

Author

Peter Luschny, Jul 06 2011

Keywords

Crossrefs

Cf. A107895.

Programs

  • Maple
    EulerTrans := proc(p) local b; b := proc(n) option remember; local d, j;
    `if`(n=0,1,add(add(d*p(d),d=numtheory[divisors](j))*b(n-j),j=1..n)/n) end end:
    A190905 := EulerTrans(n->n!/iquo(n,2)!^2): seq( A190905(n),n=0..30); # After Alois P. Heinz, A000335.
  • Mathematica
    sf[n_] := With[{f = Floor[n/2]}, Pochhammer[f+1, n-f]/f!]; EulerTrans[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[j]}]*b[n-j], {j, 1, n}]/n]; b]; a = EulerTrans[sf]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jul 29 2013, after Maple *)

A302449 Expansion of Product_{k>=1} 1/(1 - x^k)^(k*(4*k^2-1)/3).

Original entry on oeis.org

1, 1, 11, 46, 185, 700, 2676, 9646, 34166, 117500, 396506, 1310527, 4258313, 13607309, 42846151, 133039791, 407833188, 1235202869, 3699140386, 10960888382, 32154531807, 93437164720, 269087234273, 768340525743, 2176098269286, 6115444177489, 17058887661133
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 08 2018

Keywords

Comments

Euler transform of A000447.

Crossrefs

Programs

  • Mathematica
    nmax = 26; CoefficientList[Series[Product[1/(1 - x^k)^(k (4 k^2 - 1)/3), {k, 1, nmax}], {x, 0, nmax}], x]
    a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d^2 (4 d^2 - 1)/3, {d, Divisors[k]}] a[n - k], {k, 1, n}]/n]; Table[a[n], {n, 0, 26}]

Formula

G.f.: Product_{k>=1} 1/(1 - x^k)^A000447(k).
a(n) ~ exp(5 * Zeta(5)^(1/5) * n^(4/5)/2 - Zeta(3) * n^(2/5) / (12 * Zeta(5)^(2/5)) + 4*Zeta'(-3)/3 - 1/36 - Zeta(3)^2 / (720*Zeta(5))) * A^(1/3) * Zeta(5)^(83/900) / (2^(7/180) * sqrt(5*Pi) * n^(533/900)), where A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Apr 08 2018

A308291 Expansion of Sum_{k>=1} mu(k)*log(1 + x^k/(1 - x^k)^4)/k.

Original entry on oeis.org

1, 3, 6, 4, -3, -22, -23, 8, 88, 139, -19, -472, -869, -101, 2684, 5668, 2104, -15300, -37680, -22428, 86645, 252383, 202936, -482512, -1694944, -1710607, 2584008, 11368664, 13819803, -12802724, -75911328, -108463344, 53647377, 503132556, 833364427, -127320060
Offset: 1

Views

Author

Ilya Gutkovskiy, May 18 2019

Keywords

Comments

Inverse Euler transform of tetrahedral numbers (A000292).

Crossrefs

Programs

  • Mathematica
    nmax = 36; CoefficientList[Series[Sum[MoebiusMu[k] Log[1 + x^k/(1 - x^k)^4]/k, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    nmax = 50; s = ConstantArray[0, nmax]; Do[s[[j]] = j^2*(j + 1)*(j + 2)/6 - Sum[s[[d]]*(j - d)*(j - d + 1)*(j - d + 2)/6, {d, 1, j - 1}], {j, 1, nmax}]; Table[Sum[MoebiusMu[k/d]*s[[d]], {d, Divisors[k]}]/k, {k, 1, nmax}] (* Vaclav Kotesovec, Aug 10 2019 *)

Formula

-1 + Product_{n>=1} 1/(1 - x^n)^a(n) = g.f. of A000292.

A318121 a(n) = [x^n] exp(Sum_{k>=1} x^k*(1 + (n - 3)*x^k)/(k*(1 - x^k)^4)).

Original entry on oeis.org

1, 1, 4, 15, 65, 269, 1205, 5325, 24064, 108849, 496790, 2275492, 10470720, 48325984, 223721404, 1038182441, 4828274432, 22497132116, 105001996350, 490816448220, 2297356108318, 10766317435860, 50511178395306, 237217429972191, 1115084064063866, 5246116796164594
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 18 2018

Keywords

Comments

For n > 2, a(n) is the n-th term of the Euler transform of n-gonal pyramidal numbers.

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[Exp[Sum[x^k (1 + (n - 3) x^k)/(k (1 - x^k)^4), {k, 1, n}]], {x, 0, n}], {n, 0, 25}]

Formula

a(n) ~ c * d^n / sqrt(n), where d = 4.80064986801984997726284... and c = 0.244706939300168165858... - Vaclav Kotesovec, Aug 19 2018

A321598 a(n) = Sum_{d|n} d*binomial(d+2,3).

Original entry on oeis.org

1, 9, 31, 89, 176, 375, 589, 1049, 1516, 2384, 3147, 4823, 5916, 8437, 10406, 14105, 16474, 22380, 25271, 33264, 37810, 47683, 52901, 68183, 73301, 91100, 100174, 122197, 130356, 161750, 169137, 205593, 219162, 259242, 272714, 330524, 338144, 400719, 421686, 493424
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 14 2018

Keywords

Comments

Inverse Möbius transform of A002417.

Crossrefs

Programs

  • Mathematica
    Table[Sum[d Binomial[d + 2, 3], {d, Divisors[n]}], {n, 40}]
    nmax = 40; Rest[CoefficientList[Series[Sum[x^k (1 + 3 x^k)/(1 - x^k)^5, {k, 1, nmax}], {x, 0, nmax}], x]]
    Table[(2 DivisorSigma[2, n] + 3 DivisorSigma[3, n] + DivisorSigma[4, n])/6, {n, 40}]
  • PARI
    a(n) = my(f = factor(n)); (sigma(f, 4) + 3*sigma(f, 3) + 2*sigma(f, 2)) / 6; \\ Amiram Eldar, Jan 02 2025

Formula

G.f.: Sum_{k>=1} x^k*(1 + 3*x^k)/(1 - x^k)^5.
G.f.: Sum_{k>=1} k*A000292(k)*x^k/(1 - x^k).
L.g.f.: -log(Product_{k>=1} (1 - x^k)^A000292(k)) = Sum_{n>=1} a(n)*x^n/n.
Dirichlet g.f.: (zeta(s-4) + 3*zeta(s-3) + 2*zeta(s-2))*zeta(s)/6.
a(n) = (2*sigma_2(n) + 3*sigma_3(n) + sigma_4(n))/6.
a(n) = Sum_{d|n} A002417(d).
Sum_{k=1..n} a(k) ~ zeta(5) * n^5 / 30. - Vaclav Kotesovec, Feb 02 2019
Previous Showing 21-30 of 34 results. Next