cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-34 of 34 results.

A107842 A number triangle of lattice walks.

Original entry on oeis.org

1, 2, 1, 5, 5, 1, 14, 20, 8, 1, 42, 75, 44, 11, 1, 132, 275, 208, 77, 14, 1, 429, 1001, 910, 440, 119, 17, 1, 1430, 3640, 3808, 2244, 798, 170, 20, 1, 4862, 13260, 15504, 10659, 4655, 1309, 230, 23, 1, 16796, 48450, 62016, 48279, 24794, 8602, 2000, 299, 26, 1
Offset: 0

Views

Author

Paul Barry, May 24 2005

Keywords

Comments

First column is A000108(n+1). Columns include A000344, A003518 and A000589. Row sums are A026671. Compare [1,1,1,...] DELTA [0,1,0,0,...] where DELTA is the operator defined in A084938.
Transposed version in A109450. - Philippe Deléham, Jun 05 2007

Examples

			Triangle begins
   1;
   2,  1;
   5,  5,  1;
  14, 20,  8,  1;
  42, 75, 44, 11,  1;
Triangle [1,1,1,1,1,...] DELTA [0,1,0,0,0,0,...] begins:
    1;
    1,   0;
    2,   1,   0;
    5,   5,   1,   0;
   14,  20,   8,   1,   0;
   42,  75,  44,  11,   1,   0;
  132, 275, 208,  77,  14,   1,   0; ...
		

Formula

Number triangle T(n, k) = (3k+2)*C(2n+k+1, n-k)/(n+2k+2).
Column k has g.f.: x^k*C(x)^(3k+2) where C(x) is the g.f. of A000108.

A109450 Triangle T(n,k), 0<=k<=n, read by rows, given by [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, ...] DELTA [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...] where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 0, 1, 0, 1, 2, 0, 1, 5, 5, 0, 1, 8, 20, 14, 0, 1, 11, 44, 75, 42, 0, 1, 14, 77, 208, 275, 132, 0, 1, 17, 119, 440, 910, 1001, 429, 0, 1, 20, 170, 798, 2244, 3808, 3640, 1430, 0, 1, 23, 230, 1309, 4655, 10659, 15504, 13260, 4862, 0, 1, 26, 299, 2000
Offset: 0

Views

Author

Philippe Deléham, Aug 26 2005

Keywords

Comments

Row sums : 1, 1, 3, 11, 43, 173, .... (see A026671).
Transposed version in A107842.

Examples

			Triangle begins:
1;
0, 1;
0, 1, 2;
0, 1, 5, 5;
0, 1, 8, 20, 14;
0, 1, 11, 44, 75, 42;
0, 1, 14, 77, 208, 275, 132
		

Crossrefs

Formula

T(0, 0) = 1, T(n, 0) = 0 if n>0, T(n, k) = 0 if k>n, T(n, k) = (3n-3k+2)*binomial(3n-k-1, k-1)/(3n-2k+1).
T(n, n) = A000108(n), Catalan numbers.

A228343 The number of ordered trees with bicolored single edges on the boundary.

Original entry on oeis.org

1, 2, 5, 15, 50, 175, 625, 2251, 8142, 29544, 107538, 392726, 1439204, 5292833, 19533241, 72333107, 268728214, 1001448308, 3742866166, 14026901282, 52701685564, 198481560878, 749170991770, 2833635556670, 10738689128460, 40770816357920, 155056284790340, 590644481896972
Offset: 0

Views

Author

Louis Shapiro, Aug 20 2013

Keywords

Examples

			When n=3 the five trees contribute as follows: UUUDDD 8; UUDDUD, UDUUDD,UUDUDD 2 each; and UDUDUD just 1.
		

Crossrefs

Programs

  • Mathematica
    Table[FullSimplify[I*2^n - 5/2*Gamma[3+2*n] * HypergeometricPFQRegularized[{1,3/2+n,2+n},{n,5+n},2]],{n,0,20}] (* Vaclav Kotesovec, Jan 31 2014 *)
  • PARI
    x = 'x + O('x^66);
    C = serreverse( x/( 1/(1-x) ) ) / x; \\ Catalan A000108
    gf = (1+x^2*C^5)/(1-2*x);
    Vec(gf) \\ Joerg Arndt, Aug 21 2013

Formula

G.f.: (1+x^2*C^5)/(1-2*x) where C is the Catalan number generating function (cf. A000108).
D-finite with recurrence: -(n+3)*(n-2)*a(n) +6*(n^2-2)*a(n-1) -4*n*(2*n-1)*a(n-2)=0. - R. J. Mathar, Aug 25 2013
a(n) -2*a(n-1) = A000344(n). - R. J. Mathar, Aug 25 2013
a(n) ~ 5 * 2^(2*n+1) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Jan 31 2014

A268329 Expansion of (1 - sqrt(1 - 4*x))^5/16.

Original entry on oeis.org

2, 10, 40, 150, 550, 2002, 7280, 26520, 96900, 355300, 1307504, 4828850, 17895150, 66533250, 248124000, 927983760, 3479939100, 13082337900, 49295766000, 186156379500, 704415740028, 2670587146260, 10142836030240, 38586876202000, 147029304149000
Offset: 5

Views

Author

Ran Pan, Feb 01 2016

Keywords

Comments

a(n) is the number of North-East paths from (0,0) to (n,n) that cross the diagonal vertically exactly once and horizontally exactly twice, and bounce off the diagonal to the right once but not to the left. Details about this sequence can be found in Section 4.5 in Pan and Remmel's link. - Ran Pan, Feb 01 2016

Crossrefs

Programs

  • Mathematica
    Table[10 Binomial[2 n - 6, n - 5]/n, {n, 5, 29}] (* or *)
    Table[SeriesCoefficient[(1 - Sqrt[1 - 4 x])^5/16, {x, 0, n}], {n, 5, 29}] (* Michael De Vlieger, Feb 17 2016 *)

Formula

G.f.: (1 - sqrt(1 - 4*x))^5/16.
a(n) = 10 * binomial(2n-6,n-5)/n.
a(n) = 2*A000344(n-3). - R. J. Mathar, Feb 17 2016
D-finite with recurrence: n*(n-5)*a(n) -2*(n-3)*(2*n-7)*a(n-1)=0. - R. J. Mathar, Feb 17 2016
Previous Showing 31-34 of 34 results.