A107842
A number triangle of lattice walks.
Original entry on oeis.org
1, 2, 1, 5, 5, 1, 14, 20, 8, 1, 42, 75, 44, 11, 1, 132, 275, 208, 77, 14, 1, 429, 1001, 910, 440, 119, 17, 1, 1430, 3640, 3808, 2244, 798, 170, 20, 1, 4862, 13260, 15504, 10659, 4655, 1309, 230, 23, 1, 16796, 48450, 62016, 48279, 24794, 8602, 2000, 299, 26, 1
Offset: 0
Triangle begins
1;
2, 1;
5, 5, 1;
14, 20, 8, 1;
42, 75, 44, 11, 1;
Triangle [1,1,1,1,1,...] DELTA [0,1,0,0,0,0,...] begins:
1;
1, 0;
2, 1, 0;
5, 5, 1, 0;
14, 20, 8, 1, 0;
42, 75, 44, 11, 1, 0;
132, 275, 208, 77, 14, 1, 0; ...
A109450
Triangle T(n,k), 0<=k<=n, read by rows, given by [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, ...] DELTA [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...] where DELTA is the operator defined in A084938.
Original entry on oeis.org
1, 0, 1, 0, 1, 2, 0, 1, 5, 5, 0, 1, 8, 20, 14, 0, 1, 11, 44, 75, 42, 0, 1, 14, 77, 208, 275, 132, 0, 1, 17, 119, 440, 910, 1001, 429, 0, 1, 20, 170, 798, 2244, 3808, 3640, 1430, 0, 1, 23, 230, 1309, 4655, 10659, 15504, 13260, 4862, 0, 1, 26, 299, 2000
Offset: 0
Triangle begins:
1;
0, 1;
0, 1, 2;
0, 1, 5, 5;
0, 1, 8, 20, 14;
0, 1, 11, 44, 75, 42;
0, 1, 14, 77, 208, 275, 132
A228343
The number of ordered trees with bicolored single edges on the boundary.
Original entry on oeis.org
1, 2, 5, 15, 50, 175, 625, 2251, 8142, 29544, 107538, 392726, 1439204, 5292833, 19533241, 72333107, 268728214, 1001448308, 3742866166, 14026901282, 52701685564, 198481560878, 749170991770, 2833635556670, 10738689128460, 40770816357920, 155056284790340, 590644481896972
Offset: 0
When n=3 the five trees contribute as follows: UUUDDD 8; UUDDUD, UDUUDD,UUDUDD 2 each; and UDUDUD just 1.
- Dennis E. Davenport, Lara K. Pudwell, Louis W. Shapiro, and Leon C. Woodson, The Boundary of Ordered Trees, Journal of Integer Sequences, Vol. 18 (2015), Article 15.5.8; preprint, 2014.
-
Table[FullSimplify[I*2^n - 5/2*Gamma[3+2*n] * HypergeometricPFQRegularized[{1,3/2+n,2+n},{n,5+n},2]],{n,0,20}] (* Vaclav Kotesovec, Jan 31 2014 *)
-
x = 'x + O('x^66);
C = serreverse( x/( 1/(1-x) ) ) / x; \\ Catalan A000108
gf = (1+x^2*C^5)/(1-2*x);
Vec(gf) \\ Joerg Arndt, Aug 21 2013
A268329
Expansion of (1 - sqrt(1 - 4*x))^5/16.
Original entry on oeis.org
2, 10, 40, 150, 550, 2002, 7280, 26520, 96900, 355300, 1307504, 4828850, 17895150, 66533250, 248124000, 927983760, 3479939100, 13082337900, 49295766000, 186156379500, 704415740028, 2670587146260, 10142836030240, 38586876202000, 147029304149000
Offset: 5
-
Table[10 Binomial[2 n - 6, n - 5]/n, {n, 5, 29}] (* or *)
Table[SeriesCoefficient[(1 - Sqrt[1 - 4 x])^5/16, {x, 0, n}], {n, 5, 29}] (* Michael De Vlieger, Feb 17 2016 *)
Comments