Original entry on oeis.org
0, 1, 3, 8, 24, 78, 268, 956, 3496, 12998, 48876, 185268, 706456, 2706204, 10404696, 40124792, 155133904, 601113158, 2333671756, 9075266372, 35345525944, 137847053108, 538258923016, 2104101060872, 8233434921904, 32247612071708, 126410623214968, 495918566502536
Offset: 0
-
a[n_]:=(2^(n+1)+4^n+4Binomial[2n-2,n-1]-8Binomial[2n-2,n-2]Hypergeometric2F1[1,2-n,1+n,-1])/8; Join[{0,1},Array[a,26,2]]
A090299
Table T(n,k), n>=0 and k>=0, read by antidiagonals : the k-th column given by the k-th polynomial K_k related to A090285.
Original entry on oeis.org
1, 1, 1, 2, 3, 1, 5, 10, 5, 1, 14, 35, 22, 7, 1, 42, 126, 93, 38, 9, 1, 132, 462, 386, 187, 58, 11, 1, 429, 1716, 1586, 874, 325, 82, 13, 1, 1430, 6435, 6476, 3958, 1686, 515, 110, 15, 1, 4862, 24310, 26333, 17548, 8330, 2934, 765, 142, 17, 1
Offset: 0
row n=0 : 1, 1, 2, 5, 14, 42, 132, 429, ... see A000108.
row n=1 : 1, 3, 10, 35, 126, 462, 1716, 6435, ... see A001700.
row n=2 : 1, 5, 22, 93, 386, 1586, 6476, ... see A000346.
row n=3 : 1, 7, 38, 187, 874, 3958, 17548, ... see A000531.
row n=4 : 1, 9, 58, 325, 1686, 8330, 39796, ... see A018218.
Other rows :
A029887,
A042941,
A045724,
A042985,
A045492. Columns :
A000012,
A005408. Row n is the convolution of the row (n-j) with
A000984,
A000302,
A002457,
A002697 (first term omitted),
A002802,
A038845,
A020918,
A038846,
A020920 for j=1, 2, ..9 respectively.
Corrected by Alford Arnold, Oct 18 2006
A204451
2*A014335 - A203578. Difference of the exponential convolution of A000045 (Fibonacci) with itself and the corresponding exponential half-convolution.
Original entry on oeis.org
0, 0, 0, 3, 8, 35, 75, 371, 888, 3891, 9445, 40755, 102323, 426803, 1091167, 4469555, 11625960, 46805811, 123364443, 490156851, 1306737465, 5132989235, 13816838695, 53753361203, 145912841523, 562912506675, 1539304050375, 5894896300851, 16225419029303, 61732155503411, 170909837010835
Offset: 0
A355635
Triangle read by rows. Row n gives the coefficients of Product_{k=0..n-1} (x - binomial(n-1,k)) expanded in decreasing powers of x, with row 0 = {1}.
Original entry on oeis.org
1, 1, -1, 1, -2, 1, 1, -4, 5, -2, 1, -8, 22, -24, 9, 1, -16, 93, -238, 256, -96, 1, -32, 386, -2180, 5825, -6500, 2500, 1, -64, 1586, -19184, 117561, -345600, 407700, -162000, 1, -128, 6476, -164864, 2229206, -15585920, 51583084, -64538880, 26471025
Offset: 0
The triangle begins:
1;
1, -1;
1, -2, 1;
1, -4, 5, -2;
1, -8, 22, -24, 9;
1, -16, 93, -238, 256, -96;
1, -32, 386, -2180, 5825, -6500, 2500;
...
Row 4: x^4 - 8*x^3 + 22*x^2 - 24*x + 9 = (x-1)*(x-4)*(x-6)*(x-4)*(x-1).
Cf.
A001142 (right diagonal unsigned).
-
T(n, k) = polcoeff(prod(m=0, n, (x-binomial(n-1, m))), n-k+1);
Comments