cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-42 of 42 results.

A249169 Fibonacci 16-step numbers, a(n) = a(n-1) + a(n-2) + ... + a(n-16).

Original entry on oeis.org

1, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65535, 131069, 262136, 524268, 1048528, 2097040, 4194048, 8388032, 16775936, 33551616, 67102720, 134204416, 268406784, 536809472, 1073610752, 2147205120, 4294377472, 8588689409
Offset: 15

Views

Author

Alan N. Inglis, Oct 22 2014

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<15, 0,
          `if`(n=15, 1, add(a(n-j), j=1..16)))
        end:
    seq(a(n), n=15..50);  # Alois P. Heinz, Oct 23 2014
  • Mathematica
    CoefficientList[Series[-1 /(x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x - 1), {x, 0, 50}], x] (* Vincenzo Librandi, Nov 21 2014 *)

Formula

a(n) = a(n-1) + a(n-2) + ... + a(n-16).
G.f.: -x^15 / (x^16+x^15+x^14+x^13+x^12+x^11+x^10+x^9+x^8+x^7+x^6+x^5 +x^4+x^3+x^2+x-1). - Alois P. Heinz, Oct 23 2014

A345372 a(n) = Sum_{i=1..n} nac(i,n) where nac(i,n) is the n-th i-bonacci number. The n-th i-bonacci number here is equal to 1 for the first i terms, with subsequent terms equaling the sum of the previous n terms.

Original entry on oeis.org

1, 2, 4, 8, 16, 31, 60, 114, 217, 411, 780, 1481, 2820, 5379, 10288, 19720, 37884, 72924, 140640, 271695, 525698, 1018611, 1976276, 3838889, 7465191, 14531683, 28313776, 55214993, 107762464, 210477611, 411387724, 804609206, 1574671586, 3083549861, 6041628460
Offset: 1

Views

Author

Christoph B. Kassir, Jun 16 2021

Keywords

Comments

a(n) is the sum of the first n elements of the n-th column of the following array:
1, 1, 1, 1, 1, ... (1-bonacci numbers)
1, 1, 2, 3, 5, ... (2-bonacci or Fibonacci numbers)
1, 1, 1, 3, 5, ... (3-bonacci or tribonacci numbers)
1, 1, 1, 1, 4, ... (4-bonacci or tetranacci numbers)
...
For n >= 3, this sequence is 2 + antidiagonal sums of A061451.

Crossrefs

Programs

  • Maple
    b:= proc(i, n) option remember; `if`(n=0, 0,
          `if`(n<=i, 1, add(b(i, n-j), j=1..i)))
        end:
    a:= n-> add(b(i, n), i=1..n):
    seq(a(n), n=1..36);  # Alois P. Heinz, Jun 16 2021
  • Mathematica
    b[i_, n_] := b[i, n] = If[n==0, 0,
         If[n<=i, 1, Sum[b[i, n-j], {j, 1, i}]]];
    a[n_] := Sum[b[i, n], {i, 1, n}];
    Table[a[n], {n, 1, 36}] (* Jean-François Alcover, May 29 2022, after Alois P. Heinz *)

Formula

a(n) = Sum_{i=1..n} nac(i,n) where nac(i,n) = 1 if 1 <= n <= i, Sum_{k=1..i} nac(i,n-k) if n > i.
Previous Showing 41-42 of 42 results.