cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 91-100 of 104 results. Next

A267215 Integers k such that k! is the sum of 3 squares.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 79, 80
Offset: 1

Views

Author

Altug Alkan, Jan 12 2016

Keywords

Comments

Motivation for this sequence is the equation n! = x^2 + y^2 + z^2 where x, y and z are integers.
The asymptotic density of this sequence is 7/8 (Deshouillers and Luca, 2010). - Amiram Eldar, Jan 11 2021

Examples

			0 is a term because 0! = 1 = 0^2 + 0^2 + 1^2.
2 is a term because 2! = 2 = 0^2 + 1^2 + 1^2.
3 is a term because 3! = 6 = 1^2 + 1^2 + 2^2.
6 is a term because 6! = 720 = 0^2 + 12^2 + 24^2.
		

Crossrefs

Complement of A084953.

Programs

  • Mathematica
    Select[Range[0, 18], SquaresR[3, #!] > 0 &] (* Michael De Vlieger, Jan 13 2016 *)
  • PARI
    isA004215(n) = { my(fouri, j) ; fouri=1 ; while( n >=7*fouri, if( n % fouri ==0, j= n/fouri -7 ; if( j % 8 ==0, return(1) ) ; ) ; fouri *= 4 ; ) ; return(0) ; } { for(n=1, 400, if(isA004215(n), print1(n, ", ") ; ) ; ) ; }
    for(n=0, 1e2, if(!isA004215(n!), print1(n, ", ")));

A267312 Integers n such that n^3 is the sum of 3 nonzero squares.

Original entry on oeis.org

3, 5, 6, 9, 10, 11, 12, 13, 14, 17, 18, 19, 20, 21, 22, 24, 25, 26, 27, 29, 30, 33, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 56, 57, 58, 59, 61, 62, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 76, 77, 78, 80, 81, 82, 83, 84, 85, 86, 88, 89, 90, 91, 93, 94, 96, 97, 98, 99, 100
Offset: 1

Views

Author

Altug Alkan, Jan 13 2016

Keywords

Comments

Motivation for this sequence is the equation n^3 = x^2 + y^2 + z^2 where x, y and z are nonzero integers.
Corresponding cubes are 27, 125, 216, 729, 1000, 1331, 1728, 2197, 2744, 4913, 5832, 6859, 8000, 9261, 10648, 13824, 15625, 17576, 19683, 24389, 27000, ...

Examples

			3 is a term because 3^3 = 27 = 1^2 + 1^2 + 5^2.
5 is a term because 5^3 = 125 = 5^2 + 6^2 + 8^2.
6 is a term because 6^3 = 216 = 2^2 + 4^2 + 14^2.
9 is a term because 9^3 = 729 = 2^2 + 10^2 + 25^2.
		

Crossrefs

Cf. A000408.

Programs

  • Mathematica
    Select[Range@ 100, Length[PowersRepresentations[#^3, 3, 2] /. {x_, , } /; x == 0 -> Nothing] != 0 &] (* Michael De Vlieger, Jan 13 2016 *)
  • PARI
    is(n) = { my(a, b) ; a=1; while(a^2+1
    				

A267686 Positive integers n such that n^4 = a^3 + b^3 = x^2 + y^2 + z^2 where x, y, z, a and b are positive integers, is soluble.

Original entry on oeis.org

9, 28, 35, 54, 65, 72, 91, 126, 133, 134, 152, 182, 183, 189, 201, 217, 219, 224, 243, 250, 273, 278, 280, 309, 341, 344, 351, 370, 399, 407, 422, 432, 453, 468, 497, 513, 520, 539, 559, 576, 579, 637, 651, 658, 686, 728, 730, 737, 756, 793, 854, 855
Offset: 1

Views

Author

Altug Alkan, Jan 19 2016

Keywords

Comments

Inspired by intersection of A000408, A000583 and A003325.
Corresponding fourth powers are 6561, 614656, 1500625, 8503056, 17850625, 26873856, 68574961, 252047376, 312900721, 322417936, 533794816, 1097199376, 1121513121, 1275989841, 1632240801, 2217373921, 2300257521, 2517630976, 3486784401, ...
2 is the first number that its 4th power, 2^4, is the sum of 2 positive cubes and is not the sum of 3 nonzero squares. 16 is the second number for this case. So 2 and 16 are not in this sequence.

Examples

			9 is a term because 9^4 = 9^3 + 18^3 = 1^2 + 28^2 + 76^2.
28 is a term because 28^4 = 28^3 + 84^3 = 64^2 + 144^2 + 768^2.
35 is a term because 35^4 = 70^3 + 105^3 = 1^2 + 600^2 + 1068^2.
54 is a term because 54^4 = 162^3 + 162^3 = 12^2 + 264^2 + 2904^2.
399 is a term because 399^4 = 665^3 + 2926^3 = 17^2 + 11236^2 + 158804^2.
		

Crossrefs

Programs

  • PARI
    isA000408(n) = {my(a, b); a=1; while(a^2+1A003325(n)=#select(v->min(v[1], v[2])>0, thue(T, n))>0
    for(n=3, 1e3, if(isA000408(n^4) && isA003325(n^4), print1(n, ", ")));

Extensions

Added missing term a(32), Chai Wah Wu, Jan 31 2016

A272100 Integers n that are the sum of three nonzero squares while n*(n+1) is not.

Original entry on oeis.org

12, 19, 44, 51, 76, 83, 108, 115, 140, 147, 172, 179, 204, 211, 236, 243, 268, 275, 300, 307, 332, 339, 364, 371, 396, 403, 428, 435, 460, 467, 492, 499, 524, 531, 556, 563, 588, 595, 620, 627, 652, 659, 684, 691, 716, 723, 748, 755, 780, 787, 812, 819, 844, 851, 876, 883, 908, 915
Offset: 1

Views

Author

Altug Alkan, Apr 20 2016

Keywords

Comments

Values of a^2 + b^2 + c^2 such that (a^2 + b^2 + c^2)^2 + a^2 + b^2 + c^2 is not of the form x^2 + y^2 + z^2 where a, b, c, x, y, z are nonzero integers.
First differences of this sequence are 7, 25, 7, 25, 7, 25, 7, 25, 7, 25, ...

Examples

			12 is a term because 12 = 2^2 + 2^2 + 2^2 = A000408(5) and 12*13 = A002378(12) = 156 is not in A000408.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^3], Length[PowersRepresentations[#, 3, 2] /. {0, } -> Nothing] > 0 && Length[PowersRepresentations[# (# + 1), 3, 2] /. {0, } -> Nothing] == 0 &] (* Michael De Vlieger, Apr 20 2016, Version 10.2 *)
    LinearRecurrence[{1,1,-1},{12,19,44},60] (* Harvey P. Dale, Mar 13 2017 *)
  • PARI
    isA000408(n) = my(a, b) ; a=1 ; while(a^2+1A000408(n) && !isA000408(n*(n+1)), print1(n, ", ")));
    
  • PARI
    Vec(x*(12+7*x+13*x^2)/((1-x)^2*(1+x)) + O(x^50)) \\ Colin Barker, Apr 30 2016

Formula

From Colin Barker, Apr 30 2016: (Start)
a(n) = (32*n-17-9*(-1)^n)/2.
a(n) = 16*n-13 for n even.
a(n) = 16*n-4 for n odd.
a(n) = a(n-1)+a(n-2)-a(n-3) for n>3.
G.f.: x*(12+7*x+13*x^2) / ((1-x)^2*(1+x)).
(End)

A302359 Numbers that are the sum of 3 squares > 1.

Original entry on oeis.org

12, 17, 22, 24, 27, 29, 33, 34, 36, 38, 41, 43, 44, 45, 48, 49, 50, 54, 56, 57, 59, 61, 62, 65, 66, 67, 68, 69, 70, 72, 74, 75, 76, 77, 78, 81, 82, 83, 84, 86, 88, 89, 90, 93, 94, 96, 97, 98, 99, 101, 102, 104, 105, 106, 107, 108, 109, 110, 113, 114, 115, 116, 117, 118, 120, 121, 122, 123, 125, 126, 129
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 06 2018

Keywords

Examples

			33 is in the sequence because 33 = 2^2 + 2^2 + 5^2.
		

Crossrefs

Programs

  • Mathematica
    max = 130; f[x_] := Sum[x^(k^2), {k, 2, 20}]^3; Exponent[#, x] & /@ List @@ Normal[Series[f[x], {x, 0, max}]]
    With[{nn=15},Select[Union[Total/@Tuples[Range[2,nn]^2,3]],#<=nn^2+8&]] (* Harvey P. Dale, Jul 05 2021 *)
  • Python
    from itertools import count, takewhile, combinations_with_replacement as mc
    def aupto(N):
        sqrs = list(takewhile(lambda x: x<=N, (i**2 for i in count(2))))
        sum3 = set(sum(c) for c in mc(sqrs, 3) if sum(c) <= N)
        return sorted(sum3)
    print(aupto(129)) # Michael S. Branicky, Dec 17 2021

A065940 Integers of the form bc/a + ac/b + ab/c, where a,b,c are positive integers.

Original entry on oeis.org

3, 6, 9, 11, 12, 14, 15, 17, 18, 19, 21, 22, 24, 26, 27, 28, 29, 30, 33, 34, 35, 36, 38, 39, 41, 42, 43, 44, 45, 46, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 72, 73, 74, 75, 76, 77, 78, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91
Offset: 0

Views

Author

Floor van Lamoen, Dec 08 2001

Keywords

Crossrefs

Positive multiples of A000408.

A144020 Numbers of the form 1+i^2+j^2+k^2 with 1 <= i <= j <= k.

Original entry on oeis.org

4, 7, 10, 12, 13, 15, 18, 19, 20, 22, 23, 25, 27, 28, 30, 31, 34, 35, 36, 37, 39, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 54, 55, 57, 58, 60, 62, 63, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 82, 83, 84, 85, 87, 89, 90, 91, 92, 94, 95, 97, 98, 99, 100, 102, 103, 105, 106
Offset: 1

Views

Author

N. J. A. Sloane, Dec 02 2008, Dec 21 2008

Keywords

Comments

No number == -1 mod 8 is a sum of three squares, so multiples of 8 are missing from this sequence.
It appears that numbers == 1 mod 16 are also missing from the sequence.

Formula

a(n) = 1+A000408(n). [From R. J. Mathar, Dec 03 2008]

A242130 Sum of squares of three numbers x, y, z such that 3*floor(sum of squares/3) = x+y+z.

Original entry on oeis.org

3, 12, 14, 18, 27, 29, 33, 35, 41, 48, 50, 54, 56, 62, 66, 72, 74, 75, 77, 81, 83, 89, 93, 99, 101, 107, 108, 110, 114, 116, 122, 126, 132, 134, 140, 146, 147, 149, 153, 155, 161, 165, 171, 173, 179, 185, 189, 192, 194, 198, 200
Offset: 1

Views

Author

Carmine Suriano, May 05 2014

Keywords

Comments

Three times the quadratic average of x,y,z in most cases is greater than their sum.

Examples

			a(7)=33 for 33=1^2+4^2+4^2; floor(sqrt(33/3))=3; 3*3=9=1+4+4.
		

Crossrefs

Cf. A000408.

A267431 Indices of Catalan numbers that are not of the form x^2 + y^2 + z^2 where x, y and z are integers.

Original entry on oeis.org

10, 24, 37, 43, 46, 48, 49, 51, 69, 87, 96, 97, 102, 103, 109, 114, 117, 120, 133, 157, 170, 175, 187, 190, 192, 193, 198, 207, 226, 240, 241, 243, 261, 285, 300, 308, 332, 344, 351, 356, 360, 375, 384, 385, 390, 404, 411, 414, 415, 420, 424, 445, 450, 459, 462, 477, 480, 481
Offset: 1

Views

Author

Altug Alkan, Jan 15 2016

Keywords

Comments

See first comment in A004215.
Corresponding Catalan numbers are 16796, 1289904147324, 45950804324621742364, 150853479205085351660700, ...
It is obvious that minimum value of a(n) - a(n-1) is 1. Is there a maximum value of a(n) - a(n-1)?

Examples

			10 is a term because the 10th Catalan number is 16796 and there are no integer values of x, y and z for the equation 16796 = x^2 + y^2 + z^2.
		

Crossrefs

Programs

  • PARI
    isA004215(n) = { my(fouri, j) ; fouri=1 ; while( n >=7*fouri, if( n % fouri ==0, j= n/fouri -7 ; if( j % 8 ==0, return(1) ) ; ) ; fouri *= 4 ; ) ; return(0) ; } { for(n=1, 400, if(isA004215(n), print1(n, ", ") ; ) ; ) ; }
    c(n) = binomial(2*n,n)/(n+1);
    for(n=0, 1e3, if(isA004215(c(n)), print1(n, ", ")));

A272119 Values of a^2 + b^2 such that the equation (a^2 + b^2)^2 = x^2 + y^2 + z^2 is soluble where a, b, x, y, z are nonzero integers.

Original entry on oeis.org

13, 17, 18, 25, 26, 29, 34, 37, 41, 45, 50, 52, 53, 58, 61, 65, 68, 72, 73, 74, 82, 85, 89, 90, 97, 98, 100, 101, 104, 106, 109, 113, 116, 117, 122, 125, 130, 136, 137, 145, 146, 148, 149, 153, 157, 162, 164, 169, 170, 173, 178, 180, 181, 185, 193, 194, 197, 200, 202, 205, 208, 212, 218
Offset: 1

Views

Author

Altug Alkan, Apr 21 2016

Keywords

Comments

52 is the first term that is not a member of A046711.

Examples

			13 is a term because 13 = 2^2 + 3^2 and 13^2 = 3^2 + 4^2 + 12^2.
		

Crossrefs

Programs

  • PARI
    isA000404(n) = {for( i=1, #n=factor(n)~%4, n[1, i]==3 && n[2, i]%2 && return); n && ( vecmin(n[1, ])==1 || (n[1, 1]==2 && n[2, 1]%2))}
    isA000408(n) = {my(a, b) ; a=1 ; while(a^2+1A000404(n) && isA000408(n^2), print1(n, ", ")));
Previous Showing 91-100 of 104 results. Next