cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-27 of 27 results.

A352006 a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/2)} 2^k * a(k) * a(n-2*k-1).

Original entry on oeis.org

1, 1, 1, 3, 5, 11, 21, 59, 117, 283, 597, 1467, 3125, 7387, 16149, 39931, 87541, 207643, 463061, 1107515, 2473909, 5819739, 13132437, 31080571, 70236533, 164315035, 373572693, 875121339, 1991869237, 4639482331, 10599986709, 24765957371, 56617082101
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 28 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[2^k a[k] a[n - 2 k - 1], {k, 0, Floor[(n - 1)/2]}]; Table[a[n], {n, 0, 32}]
    nmax = 32; A[] = 0; Do[A[x] = 1/(1 - x A[2 x^2]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]

Formula

G.f. A(x) satisfies: A(x) = 1 / (1 - x * A(2*x^2)).

A352007 a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/2)} 3^k * a(k) * a(n-2*k-1).

Original entry on oeis.org

1, 1, 1, 4, 7, 19, 40, 178, 379, 1237, 2941, 10378, 24628, 78928, 198820, 813550, 1971907, 6587245, 16980079, 61488286, 155573011, 515316037, 1363261084, 4937498686, 12796438252, 42078038668, 113153315824, 390012381346, 1036020692356, 3379994401042, 9240830253940
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 28 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[3^k a[k] a[n - 2 k - 1], {k, 0, Floor[(n - 1)/2]}]; Table[a[n], {n, 0, 30}]
    nmax = 30; A[] = 0; Do[A[x] = 1/(1 - x A[3 x^2]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]

Formula

G.f. A(x) satisfies: A(x) = 1 / (1 - x * A(3*x^2)).

A352008 a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/2)} 4^k * a(k) * a(n-2*k-1).

Original entry on oeis.org

1, 1, 1, 5, 9, 29, 65, 437, 953, 3981, 10097, 49829, 123241, 516349, 1400737, 10203285, 24698905, 111642477, 304787665, 1704790917, 4392726473, 19951366877, 56296655617, 336083829621, 878995865721, 3974885167949, 11362790432305, 60789762148453, 165051865924137
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 28 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = Sum[4^k a[k] a[n - 2 k - 1], {k, 0, Floor[(n - 1)/2]}]; Table[a[n], {n, 0, 28}]
    nmax = 28; A[] = 0; Do[A[x] = 1/(1 - x A[4 x^2]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]

Formula

G.f. A(x) satisfies: A(x) = 1 / (1 - x * A(4*x^2)).

A036677 Used by Polya in calculating A000598.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 5, 19, 63, 184, 503, 1300, 3229, 7748, 18106, 41327, 92521, 203601, 441466, 944618, 1997726, 4180405, 8665024, 17805427, 36299704, 73468100, 147704332, 295122569, 586304222, 1158582080, 2278084748, 4458522727
Offset: 0

Views

Author

Keywords

Formula

G.f.: x * q(x) * (2*q(x)*p(x^2) + (q(x)^2-q(x^2)) * p(x)) / 2 where p(x) is the g.f. for A036676 and q(x) is the g.f. for A000621 with offset 0 [from Polya]. - Sean A. Irvine, Nov 21 2020

A217925 G.f. A(x) satisfies A(x) = 1 + x*A(x)*A(x^2)^2.

Original entry on oeis.org

1, 1, 1, 3, 5, 10, 19, 40, 77, 155, 306, 610, 1207, 2400, 4760, 9456, 18765, 37257, 73955, 146813, 291434, 578524, 1148434, 2279720, 4525487, 8983421, 17832976, 35399824, 70271944, 139495472, 276910976, 549691232, 1091185133, 2166094309, 4299884233, 8535634803, 16943967775
Offset: 0

Views

Author

Joerg Arndt, Oct 15 2012

Keywords

Comments

What does this sequence count?

Crossrefs

Cf. A000108 (A(x) = 1 + x*A(x)^2), A000621 (A(x) = 1 + x*A(x)*A(x^2)).
Cf. A036675 (A(x) = 1 + x*A(x)^2*A(x^2)), A101913 (A(x) = 1 + x*A(x)*A(x^3); for abs. values).

Programs

  • Maxima
    T(n,m):=if n=m then 1 else sum(binomial(m+k-1,k)*T((n-m)/2,2*k),k,1,(n-m)/4);
    makelist(T(4*n+1,1),n,0,25); /* Vladimir Kruchinin, Mar 25 2015 */
  • PARI
    N=66;  R=O('x^N);  x='x+R;
    F = 1 + x;
    { for (k=1,N+1, F = 1 + x * F * subst(F,'x,'x^2)^2 + R; ); }
    Vec(F+O('x^N))
    

Formula

a(n) ~ c * d^n, where d = 1.985085392419660786124534041173530134614822710253953085885966352..., c = 0.322822740100478716884116064042886830242825005622702339543369128... . - Vaclav Kotesovec, Aug 10 2014
a(n) = T(4*n+1,1), where T(n,m) = Sum_{k=1..(n-m)/4} C(m+k-1,k)*T((n-m)/2,2*k). - Vladimir Kruchinin, Mar 25 2015

A036678 Used by Polya in calculating A000598.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 1, 7, 37, 154, 558, 1830, 5581, 16077, 44251, 117308, 301330, 753458, 1840568, 4405344, 10355493, 23953832, 54614151, 122903818, 273320540, 601273377, 1309641376, 2826528077, 6048868456, 12843409063, 27071247989
Offset: 0

Views

Author

Keywords

Formula

G.f.: x * q(x) * (2*p(x)*p(x^2) + (q(x)^2-q(x^2))*m(x) + (p(x)^2-p(x^2))*q(x)) / 2 where m(x) is the g.f. of A036677, p(x) is the g.f. of A036676, and q(x) is the g.f. of A000621 with offset 0 [from Polya]. - Sean A. Irvine, Nov 21 2020

A351938 a(0) = 1; a(n) = -a(n-1) + 2 * Sum_{k=0..floor((n-1)/2)} a(k) * a(n-2*k-1).

Original entry on oeis.org

1, 1, 1, 3, 5, 9, 17, 35, 65, 125, 241, 463, 885, 1701, 3265, 6271, 12033, 23105, 44353, 85147, 163445, 313777, 602353, 1156339, 2219809, 4261389, 8180561, 15704215, 30147333, 57873821, 111100225, 213278943, 409431169, 785984353, 1508852673, 2896541859
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 26 2022

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := a[n] = -a[n - 1] + 2 Sum[a[k] a[n - 2 k - 1], {k, 0, Floor[(n - 1)/2]}]; Table[a[n], {n, 0, 35}]
    nmax = 35; A[] = 0; Do[A[x] = 1/(1 + x - 2 x A[x^2]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]

Formula

G.f. A(x) satisfies: A(x) = 1 / (1 + x - 2 * x * A(x^2)).
Previous Showing 21-27 of 27 results.