A352006 a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/2)} 2^k * a(k) * a(n-2*k-1).
1, 1, 1, 3, 5, 11, 21, 59, 117, 283, 597, 1467, 3125, 7387, 16149, 39931, 87541, 207643, 463061, 1107515, 2473909, 5819739, 13132437, 31080571, 70236533, 164315035, 373572693, 875121339, 1991869237, 4639482331, 10599986709, 24765957371, 56617082101
Offset: 0
Keywords
Programs
-
Mathematica
a[0] = 1; a[n_] := a[n] = Sum[2^k a[k] a[n - 2 k - 1], {k, 0, Floor[(n - 1)/2]}]; Table[a[n], {n, 0, 32}] nmax = 32; A[] = 0; Do[A[x] = 1/(1 - x A[2 x^2]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
Formula
G.f. A(x) satisfies: A(x) = 1 / (1 - x * A(2*x^2)).
Comments