cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 33 results. Next

A030037 a(n+1) = Sum_{k=0..floor(2*n/5)} a(k) * a(n-k).

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 6, 11, 20, 40, 77, 160, 319, 636, 1332, 2721, 5799, 12068, 25109, 53943, 113682, 245931, 523896, 1115239, 2425858, 5208339, 11388934, 24630843, 53194684, 116764483, 253764437, 559289434, 1221970242, 2666776056, 5889628123, 12910470041, 28608337855
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • PARI
    lista(nn) = {my(v=vector(nn+2, i, 1)); for(n=2, nn, v[n+2]=sum(k=1, 1+(2*n)\5, v[k]*v[n+2-k])); v; } \\ Jinyuan Wang, Mar 18 2020

Extensions

More terms from Jinyuan Wang, Mar 18 2020

A030038 a(n+1) = Sum_{k=0..floor(3*n/5)} a(k) * a(n-k).

Original entry on oeis.org

1, 1, 1, 2, 3, 6, 13, 26, 57, 117, 262, 602, 1329, 3079, 6903, 16161, 38185, 87745, 207896, 481817, 1148246, 2755781, 6485489, 15592656, 36899080, 88966356, 215687474, 515590781, 1251629165, 2998835401, 7291353036, 17803231663, 42980538045, 104981503048, 253813177447
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • PARI
    lista(nn) = {my(v=vector(nn+2, i, 1)); for(n=1, nn, v[n+2]=sum(k=1, 1+(3*n)\5, v[k]*v[n+2-k])); v; } \\ Jinyuan Wang, Mar 18 2020

Extensions

More terms from Jinyuan Wang, Mar 18 2020

A300440 Number of odd strict trees of weight n (all outdegrees are odd).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 3, 5, 7, 11, 18, 27, 45, 75, 125, 207, 353, 591, 1013, 1731, 2984, 5122, 8905, 15369, 26839, 46732, 81850, 142932, 251693, 441062, 778730, 1370591, 2425823, 4281620, 7601359, 13447298, 23919512, 42444497, 75632126, 134454505, 240100289
Offset: 1

Views

Author

Gus Wiseman, Mar 05 2018

Keywords

Comments

An odd strict tree of weight n is either a single node of weight n, or a finite odd-length sequence of at least 3 odd strict trees with strictly decreasing weights summing to n.

Examples

			The a(10) = 7 odd strict trees: 10, (721), (631), (541), (532), ((421)21), ((321)31).
		

Crossrefs

Programs

  • Mathematica
    g[n_]:=g[n]=1+Sum[Times@@g/@y,{y,Select[IntegerPartitions[n],Length[#]>1&&OddQ[Length[#]]&&UnsameQ@@#&]}];
    Array[g,20]
  • PARI
    seq(n)={my(v=vector(n)); for(n=1, n, v[n] = 1 + polcoef(prod(k=1, n-1, 1 + v[k]*x^k + O(x*x^n)) - prod(k=1, n-1, 1 - v[k]*x^k + O(x*x^n)), n)/2); v} \\ Andrew Howroyd, Aug 25 2018

A030032 a(n+1) = Sum_{k=0..floor(n/3)} a(k) * a(n-k).

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 5, 10, 18, 33, 66, 127, 244, 506, 1009, 2018, 4229, 8631, 17631, 37265, 77349, 160433, 342807, 720334, 1513791, 3254445, 6902283, 14634519, 31602375, 67522598, 144182089, 312851626, 672411931, 1444776938, 3145883976, 6794243911, 14667444523
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • PARI
    lista(nn) = {my(v=vector(nn+2, i, 1)); for(n=3, nn, v[n+2]=sum(k=1, 1+n\3, v[k]*v[n+2-k])); v; } \\ Jinyuan Wang, Mar 18 2020

Extensions

More terms from Jinyuan Wang, Mar 18 2020

A030034 a(n+1) = Sum_{k=0..floor(n/4)} a(k) * a(n-k).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 3, 5, 8, 16, 29, 53, 98, 196, 376, 723, 1393, 2786, 5474, 10752, 21128, 42979, 85905, 171810, 343522, 703270, 1421998, 2875847, 5817194, 11978061, 24428369, 49817625, 101588512, 209911975, 430722621, 883632025, 1812556425, 3763773324, 7764267706
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • PARI
    lista(nn) = {my(v=vector(nn+2, i, 1)); for(n=3, nn, v[n+2]=sum(k=1, 1+n\4, v[k]*v[n+2-k])); v; } \\ Jinyuan Wang, Mar 18 2020

Extensions

More terms from Jinyuan Wang, Mar 18 2020

A030039 a(n+1) = Sum_{k=0..floor(4*n/5)} a(k) * a(n-k).

Original entry on oeis.org

1, 1, 1, 2, 4, 9, 21, 42, 97, 233, 570, 1414, 3319, 8208, 20595, 52370, 133955, 328261, 833652, 2136155, 5519116, 14341917, 36069212, 93074465, 241613666, 630653714, 1652472131, 4215072482, 10985970447, 28756470626, 75580683613, 199201407564, 513021407584
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • PARI
    lista(nn) = {my(v=vector(nn+2, i, 1)); for(n=1, nn, v[n+2]=sum(k=1, 1+(4*n)\5, v[k]*v[n+2-k])); v; } \\ Jinyuan Wang, Mar 18 2020

Extensions

More terms from Jinyuan Wang, Mar 18 2020

A124973 a(n) = Sum_{k=0..(n-2)/2} a(k)a*(n-1-k), with a(0) = a(1) = 1.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 6, 11, 22, 42, 87, 174, 365, 745, 1587, 3303, 7103, 14974, 32477, 69284, 151172, 325077, 713400, 1545719, 3406989, 7423648, 16429555, 35992438, 79912474, 175785514, 391488688, 864591621, 1930333822, 4276537000
Offset: 0

Views

Author

Keywords

Comments

Number of unordered rooted trees with all outdegrees <= 2 and, if a node has two subtrees, they have a different number of nodes (equivalently, ordered rooted trees where the left subtree has more nodes than the right subtree).

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember;
          if n<2 then 1
        else add(a(j)*a(n-j-1), j=0..floor((n-2)/2))
          fi
        end:
    seq(a(n), n=0..40); # G. C. Greubel, Nov 19 2019
  • Mathematica
    a[n_]:= a[n]= If[n<2, 1, Sum[a[j]*a[n-j-1], {j, 0, (n-2)/2}]]; Table[a[n], {n, 0, 40}] (* G. C. Greubel, Nov 19 2019 *)
  • PARI
    a(n) = if(n<2, 1, sum(j=0, (n-2)\2, a(j)*a(n-j-1))); \\ G. C. Greubel, Nov 19 2019
    
  • Sage
    @CachedFunction
    def a(n):
        if (n<2): return 1
        else: return sum(a(j)*a(n-j-1) for j in (0..floor((n-2)/2)))
    [a(n) for n in (0..40)] # G. C. Greubel, Nov 19 2019

Formula

Lim_{n->infinity} a(n)^(1/n) = 2.327833478... - Vaclav Kotesovec, Nov 20 2019

A300864 Signed recurrence over strict trees: a(n) = -1 + Sum_{y1 + ... + yk = n, y1 > ... > yk > 0, k > 1} a(y1) * ... * a(yk).

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 2, -1, 0, 4, -6, 6, 6, -24, 38, -17, -64, 188, -230, -6, 662, -1432, 1286, 1210, -6362, 10692, -5530, -18274, 57022, -74364, 174, 216703, -489544, 467860, 391258, -2256430, 3948206, -2234064, -6725362, 21920402, -29716570, 2095564, 84595798, -198418242, 197499846
Offset: 1

Views

Author

Gus Wiseman, Mar 13 2018

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=a[n]=-1+Sum[Times@@a/@y,{y,Select[IntegerPartitions[n],Length[#]>1&&UnsameQ@@#&]}];
    -Array[a,40]

A300865 Signed recurrence over binary enriched p-trees: a(n) = (-1)^(n-1) + Sum_{x + y = n, 0 < x <= y < n} a(x) * a(y).

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 2, 2, 4, 6, 10, 16, 27, 46, 77, 131, 224, 391, 672, 1180, 2050, 3626, 6344, 11276, 19863, 35479, 62828, 112685, 200462, 360627, 644199, 1162296, 2083572, 3768866, 6777314, 12289160, 22158106, 40255496, 72765144, 132453122, 239936528, 437445448
Offset: 1

Views

Author

Gus Wiseman, Mar 13 2018

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=a[n]=(-1)^(n-1)+Sum[a[k]*a[n-k],{k,1,n/2}];
    Array[a,50]

A158616 Table of expansion coefficients [x^m] of the Rayleigh polynomial of index 2n.

Original entry on oeis.org

1, 1, 2, 11, 5, 38, 14, 946, 1026, 362, 42, 4580, 4324, 1316, 132, 202738, 311387, 185430, 53752, 7640, 429, 3786092, 6425694, 4434158, 1596148, 317136, 33134, 1430, 261868876, 579783114, 547167306, 287834558, 92481350, 18631334, 2305702
Offset: 1

Views

Author

R. J. Mathar, Mar 22 2009

Keywords

Examples

			The polynomials of low index are Phi(2,x)=Phi(4,x) = 1 ; Phi(6,x)=2 ; Phi(8,x)=11+5x ; Phi(10,x)=38+14x ; Phi(12,x)=946+1026x+362x^2+42x^3 ;
Triangle begins:
  1,
  1,
  2,
  11,5,
  38,14,
  946,1026,362,42,
  4580,4324,1316,132,
  202738,311387,185430,53752,7640,429,
  ...
		

Crossrefs

Cf. A000992, A000175 (first column), A000331 (2nd column).

Programs

  • Maple
    sig2n := proc(n,nu) option remember ; if n = 1 then 1/4/(nu+1) ; else add( procname(k,nu)*procname(n-k,nu),k=1..n-1)/(nu+n) ; simplify(%) ; fi; end:
    Phi2n := proc(n,nu) local k ; 4^n*mul( (nu+k)^(floor(n/k)),k=1..n)*sig2n(n,nu) ; factor(%) ; end:
    for n from 1 to 14 do rpoly := Phi2n(n,nu) ; print(coeffs(rpoly)) ; od:
  • Mathematica
    sig2n[n_, nu_] := sig2n[n, nu] = If[n == 1, 1/4/(nu + 1), Sum[sig2n[k, nu]*sig2n[n - k, nu], {k, 1, n - 1}]/(nu + n)] // Simplify;
    Phi2n[n_, nu_] := 4^n*Product[(nu + k)^Floor[n/k], {k, 1, n}]*sig2n[n, nu];
    T[n_] := CoefficientList[Phi2n[n, x], x];
    Table[T[n], {n, 1, 14}] // Flatten (* Jean-François Alcover, Dec 01 2023, after R. J. Mathar *)
Previous Showing 11-20 of 33 results. Next