cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 36 results. Next

A024842 a(n) = least m such that if r and s in {1/2, 1/4, 1/6, ..., 1/2n} satisfy r < s, then r < k/m < (k+2)/m < s for some integer k.

Original entry on oeis.org

11, 29, 55, 89, 131, 181, 253, 323, 417, 505, 621, 727, 865, 989, 1149, 1291, 1473, 1633, 1837, 2053, 2243, 2481, 2731, 2949, 3221, 3505, 3751, 4057, 4375, 4649, 4989, 5341, 5643, 6017, 6403, 6733, 7141, 7561, 7993, 8363, 8817, 9283, 9761, 10169, 10669, 11181, 11705
Offset: 2

Views

Author

Keywords

Comments

For a guide to related sequences, see A001000. - Clark Kimberling, Aug 12 2012

Crossrefs

Programs

  • Mathematica
    leastSeparatorS[seq_, s_] := Module[{n = 1},
    Table[While[Or @@ (Ceiling[n #1[[1]]] <
    s + 1 + Floor[n #1[[2]]] &) /@ (Sort[#1, Greater] &) /@
    Partition[Take[seq, k], 2, 1], n++]; n, {k, 2, Length[seq]}]];
    t = Map[leastSeparatorS[1/(2*Range[50]), #] &, Range[5]];
    t[[3]] (* A024842 *)
    (* Peter J. C. Moses, Aug 06 2012 *)

A024843 a(n) = least m such that if r and s in {1/1, 1/2, 1/3, ..., 1/n} satisfy r < s, then r < k/m < (k+3)/m < s for some integer k.

Original entry on oeis.org

9, 23, 43, 69, 101, 139, 183, 233, 289, 361, 431, 518, 601, 703, 799, 916, 1025, 1157, 1279, 1426, 1561, 1723, 1871, 2048, 2209, 2401, 2601, 2783, 2998, 3221, 3423, 3661, 3907, 4129, 4390, 4659, 4901, 5185, 5477, 5739, 6046, 6361, 6643, 6973, 7311, 7613, 7966, 8327, 8649
Offset: 2

Views

Author

Keywords

Comments

For a guide to related sequences, see A001000. - Clark Kimberling, Aug 08 2012

Examples

			Using the terminology introduced at A001000, the 4th separator of the set {1/3, 1/2, 1} is a(3) = 23, since 1/3 < 8/23 < 11/23 < 1/2 < 12/23 < 15/23 < 1 and 23 is the least m for which 1/3, 1/2, 1 are thus separated using numbers k/m. - _Clark Kimberling_, Aug 08 2012
		

Crossrefs

Cf. A001000.

Programs

  • Mathematica
    leastSeparatorS[seq_, s_] := Module[{n = 1},
    Table[While[Or @@ (Ceiling[n #1[[1]]] <
    s + 1 + Floor[n #1[[2]]] &) /@ (Sort[#1, Greater] &) /@
    Partition[Take[seq, k], 2, 1], n++]; n, {k, 2, Length[seq]}]];
    t = Map[leastSeparatorS[1/Range[50], #] &, Range[5]];
    TableForm[t]
    t[[4]] (* Peter J. C. Moses, Aug 08 2012 *)

A024844 a(n) = least m such that if r and s in {1/1, 1/3, 1/5, ..., 1/(2n-1)} satisfy r < s, then r < k/m < (k+3)/m < s for some integer k.

Original entry on oeis.org

7, 28, 61, 106, 163, 232, 313, 406, 511, 647, 780, 946, 1105, 1301, 1486, 1712, 1923, 2179, 2416, 2702, 2965, 3281, 3570, 3916, 4231, 4607, 4999, 5356, 5778, 6216, 6613, 7081, 7565, 8002, 8516, 9046, 9523, 10083, 10659, 11176, 11782, 12404, 12961, 13613, 14281, 14878
Offset: 2

Views

Author

Keywords

Comments

For a guide to related sequences, see A001000. - Clark Kimberling, Aug 12 2012
From Jianing Song, Aug 31 2022: (Start)
Smallest m such that ceiling(m/(2*j-1)) - floor(m/(2*j+1)) = 5 for 1 <= j <= n-1.
Obviously we have a(n) > 3/(1/(2*n-3) - 1/(2*n-1)) => a(n) >= 6*n^2 - 12*n + 5. On the other hand, a(n) <= 4/(1/(2*n-3) - 1/(2*n-1)) + 1 = 2*(2*n-1)*(2*n-3) + 1: if m >= 2*(2*n-1)*(2*n-3) + 1, then m/(2*j-1) - m/(2*j+1) > 4 => ceiling(m/(2*j-1)) - floor(m/(2*j+1)) = ceiling(m/(2*j-1)-floor(m/(2*j+1))) >= ceiling(m/(2*j-1) - m/(2*j+1)) >= 5 for 1 <= j <= n-1. (End)

Crossrefs

Programs

  • Mathematica
    leastSeparatorS[seq_, s_] := Module[{n = 1},
    Table[While[Or @@ (Ceiling[n #1[[1]]] <
    s + 1 + Floor[n #1[[2]]] &) /@ (Sort[#1, Greater] &) /@
    Partition[Take[seq, k], 2, 1], n++]; n, {k, 2, Length[seq]}]];
    t = Map[leastSeparatorS[1/(2*Range[50]-1), #] &, Range[5]];
    t[[4]] (* A024844 *)
    (* Peter J. C. Moses, Aug 06 2012 *)
  • PARI
    a(n) = for(m=6*n^2-12*n+5, 8*n^2-16*n+7, forstep(j=n-1, 1, -1, if(-((-m)\(2*j-1)) - m\(2*j+1) < 5, break(), if(j==1, return(m))))) \\ Jianing Song, Aug 31 2022

A024845 a(n) = least m such that if r and s in {1/2, 1/4, 1/6, ..., 1/(2*n)} satisfy r < s, then r < k/m < (k+3)/m < s for some integer k.

Original entry on oeis.org

15, 41, 79, 129, 191, 265, 351, 449, 577, 703, 861, 1013, 1201, 1379, 1597, 1801, 2049, 2279, 2557, 2813, 3121, 3403, 3741, 4049, 4417, 4801, 5151, 5565, 5995, 6385, 6845, 7321, 7751, 8257, 8779, 9249, 9801, 10369, 10879, 11477, 12091, 12641, 13285, 13945
Offset: 2

Views

Author

Keywords

Comments

For a guide to related sequences, see A001000. - Clark Kimberling, Aug 12 2012
From Jianing Song, Aug 31 2022: (Start)
Smallest m such that ceiling(m/(2*j)) - floor(m/(2*j+2)) >= 5 for 1 <= j <= n-1.
Obviously we have a(n) > 3/(1/(2*n-2) - 1/(2*n)) = 6*n*(n-1). On the other hand, a(n) <= 4/(1/(2*n-2) - 1/(2*n)) + 1 = 8*n*(n-1) + 1: if m >= 8*n*(n-1) + 1, then m/(2*j) - m/(2*j+2) > 4 => ceiling(m/(2*j)) - floor(m/(2*j+2)) = ceiling(m/(2*j)-floor(m/(2*j+2))) >= ceiling(m/(2*j) - m/(2*j+2)) >= 5 for 1 <= j <= n-1.
a(n) is odd for all n: for even m, we have ceiling(m/(2*j)) = ceiling((m-1)/(2*j)) (otherwise (m-1)/(2*j) would be an integer, which is impossible), so ceiling(m/(2*j)) - floor(m/(2*j+2)) >= 5 implies ceiling((m-1)/(2*j)) - floor((m-1)/(2*j+2)) >= 5. (End)

Crossrefs

Programs

  • Mathematica
    leastSeparatorS[seq_, s_] := Module[{n = 1},
    Table[While[Or @@ (Ceiling[n #1[[1]]] <
    s + 1 + Floor[n #1[[2]]] &) /@ (Sort[#1, Greater] &) /@
    Partition[Take[seq, k], 2, 1], n++]; n, {k, 2, Length[seq]}]];
    t = Map[leastSeparatorS[1/(2*Range[50]), #] &, Range[5]];
    t[[4]] (* A024845 *)
    (* Peter J. C. Moses, Aug 06 2012 *)
  • PARI
    a(n) = for(m=6*n^2-6*n+1, 8*n^2-8*n+1, forstep(j=n-1, 1, -1, if(-((-m)\(2*j)) - m\(2*j+2) < 5, break(), if(j==1, return(m))))) \\ Jianing Song, Aug 31 2022

A024846 a(n) = least m such that if r and s in {1/1, 1/2, 1/3, ..., 1/n} satisfy r < s, then r < k/m < (k+4)/m < s for some integer k.

Original entry on oeis.org

11, 29, 55, 89, 131, 181, 239, 305, 379, 461, 551, 661, 769, 898, 1023, 1171, 1313, 1480, 1639, 1825, 2001, 2206, 2399, 2623, 2833, 3076, 3303, 3565, 3809, 4090, 4351, 4651, 4961, 5249, 5578, 5917, 6231, 6589, 6957, 7297, 7684, 8081, 8447, 8863, 9289, 9681, 10126
Offset: 2

Views

Author

Keywords

Comments

For a guide to related sequences, see A001000. - Clark Kimberling, Aug 08 2012

Examples

			Using the terminology introduced at A001000, the 5th separator of the set {1/3, 1/2, 1} is a(3) = 29, since 1/3 < 10/29 < 14/29 < 1/2 < 15/29 < 19/29 < 1, and 29 is the least m for which 1/3, 1/2, 1 are thus separated using numbers k/m. - _Clark Kimberling_, Aug 08 2012
		

Crossrefs

Cf. A001000.

Programs

  • Mathematica
    leastSeparatorS[seq_, s_] := Module[{n = 1},
    Table[While[Or @@ (Ceiling[n #1[[1]]] <
    s + 1 + Floor[n #1[[2]]] &) /@ (Sort[#1, Greater] &) /@
    Partition[Take[seq, k], 2, 1], n++]; n, {k, 2, Length[seq]}]];
    t = Map[leastSeparatorS[1/Range[50], #] &, Range[5]];
    TableForm[t]
    t[[5]] (* Peter J. C. Moses, Aug 08 2012 *)

A024851 Least m such that if r and s in {-F(2*h) + tau*F(2*h-1): h = 1,2,...,n} satisfy r < s, then r < k/m < s for some integer k, where F = A000045 (Fibonacci numbers) and tau = (1+sqrt(5))/2 (golden ratio).

Original entry on oeis.org

2, 5, 12, 30, 77, 200, 522, 1365, 3572, 9350, 24477, 64080, 167762, 439205, 1149852, 3010350, 7881197, 20633240
Offset: 2

Views

Author

Keywords

Comments

Possibly a duplicate of A188378. For a guide to related sequences, see A001000. - Clark Kimberling, Aug 09 2012

Examples

			Referring to the terminology introduced at A001000, m=5 is the (1st) separator of the set S = {f(1),f(2),f(3)}, where f(h) = - F(2*h) + tau*F(2*h-1).  That is, a(3) = 5, since 1/5 < f(3) < 2/5 < f(2) < 3/5 < f(1), whereas fractions k/m for m<5 do not separate the elements of S in this manner.
		

Crossrefs

Cf. A001000.

Programs

  • Mathematica
    f[n_] := f[n] = -Fibonacci[2 n] + GoldenRatio*Fibonacci[2 n - 1]
    leastSeparator[seq_] := Module[{n = 1},
    Table[While[Or @@ (Ceiling[n #1[[1]]] <
    2 + Floor[n #1[[2]]] &) /@ (Sort[#1, Greater] &) /@
    Partition[Take[seq, k], 2, 1], n++]; n, {k, 2, Length[seq]}]];
    t = Table[N[f[h], 40], {h, 1, 18}] (* A024851 *)
    t1 = leastSeparator[t]
    (* Peter J. C. Moses, Aug 01 2012 *)

Extensions

Extended, corrected, and edited by Clark Kimberling, Aug 09 2012
a(19) from Sean A. Irvine, Jul 26 2019

A071111 a(n) is the least integer x such that there exists an integer in the open interval (x/(i+1), x/i) for i= n-1, n-2 ..., 3, 2, 1.

Original entry on oeis.org

3, 5, 7, 13, 17, 26, 31, 43, 57, 65, 82, 101, 111, 133, 157, 183, 197, 226, 257, 290, 307, 343, 381, 421, 463, 485, 530, 577, 626, 677, 703, 757, 813, 871, 931, 993, 1025, 1090, 1157, 1226, 1297, 1370, 1407, 1483, 1561, 1641, 1723, 1807, 1893, 1937, 2026, 2117
Offset: 2

Views

Author

Fernando Delgado, Paul Monasterios, and Adolfo Rodriguez (misterioso53(AT)hotmail.com), May 27 2002

Keywords

Comments

a(10) = 57, a(100) = 8191, a(1000) = 937993.
a(n) is the least integer that for k=1, 2, ..., (n-1) can be expressed as: a(n)=p*k + b for some positive integers p and b such that p>1 and p>b>0.
This is the same sequence (apart from the initial term) as A001000. The identity of these two sequences was first proved by Rustem Aidagulov and a detailed version of the proof can be found in the Alekseyev link below.
Comments from Christopher Carl Heckman, May 23 2004: "This problem was given in Crux Mathematicorum, Vol. 23 #6 (October 1997) as Problem #2272. A solution, which includes a general formula, can be found in Crux Mathematicorum, Vol. 24 #7 (November 1998): a(n) = floor (((n + x_n) / 2)^2 + 1), where x_n = floor (n + 1 - 2 sqrt (n - 1)).
"This formula was found by Florian Herzig (then a student at Cambridge, UK), who also proved that the proposer's conjecture that a(n) = cases (1 + (n-m)^2, if m^2 <= n - 2, 1 + (n-m)^2 + (n - m), otherwise) where m = floor ((1 + sqrt (4 n - 7)) / 2) also is true although 'the proof of this fact is quite challenging'.
"The problem was also solved by Peter Tingley (then an undergraduate student at the University of Waterloo, Waterloo, Ontario), who gave the alternate formula: a(n) = n y_n + floor ((n - y_n)^2 / 4 + 1), where y_n = floor (n - 2 sqrt(n - 1) + 1), which 'is readily seen to be the same as the one obtained by Herzig.'"

Examples

			a(4)=7 because 2 lies in (7/4,7/3), 3 lies in (7/3,7/2) and 4, 5 and 6 lie in (7/2,7) and for x<7 the definition doesn't hold.
		

Programs

  • Mathematica
    test[x_, n_] := Module[{k}, For[k=n, x<=k(k-1), k--, If[Ceiling[x/(k-1)]-Floor[x/k]<2, Return[False]]]; True]; a[n_] := For[x=1, True, x++, If[test[x, n], Return[x]]]

Formula

For 2<=n<=200, a(n) = n^2 - n*c(n) + floor(c(n)^2/4) + 1, where c(n) = floor(sqrt(4n-5)). Is this true for all n>=2?

Extensions

Edited by Dean Hickerson and Robert G. Wilson v, Jun 04 2002

A024819 a(n) = least m such that if r and s in {1/1, 1/3, 1/5,..., 1/(2n-1)} satisfy r < s, then r < k/m < s for some integer k.

Original entry on oeis.org

2, 4, 11, 16, 29, 37, 56, 67, 92, 121, 137, 172, 211, 254, 277, 326, 379, 436, 466, 529, 596, 667, 704, 781, 862, 947, 1036, 1082, 1177, 1276, 1379, 1486, 1597, 1654, 1771, 1892, 2017, 2146, 2279, 2347, 2486, 2629, 2776, 2927, 3082, 3161, 3322, 3487, 3656, 3829, 4006, 4187
Offset: 2

Views

Author

Keywords

Comments

For a guide to related sequences, see A001000. - Clark Kimberling, Aug 07 2012

Crossrefs

Cf. A001000.

Programs

  • Mathematica
    leastSeparator[seq_] := Module[{n = 1},
    Table[While[Or @@ (Ceiling[n #1[[1]]]
    < 2 + Floor[n #1[[2]]] &) /@
    Partition[Take[seq, k], 2, 1], n++];
    n, {k, 2, Length[seq]}]];
    t = Table[1/(2 h - 1), {h, 1, 101}];
    leastSeparator[t]
    (* Peter J. C. Moses, Aug 01 2012 *)

A024820 a(n) = least m such that if r and s in {1/2, 1/4, 1/6,..., 1/2n} satisfy r < s, then r < k/m < s for some integer k.

Original entry on oeis.org

3, 5, 13, 19, 33, 41, 61, 85, 99, 129, 163, 181, 221, 265, 313, 339, 393, 451, 513, 545, 613, 685, 761, 841, 883, 969, 1059, 1153, 1251, 1301, 1405, 1513, 1625, 1741, 1861, 1923, 2049, 2179, 2313, 2451, 2593, 2665, 2813, 2965, 3121, 3281, 3445, 3613, 3699, 3873, 4051, 4233
Offset: 2

Views

Author

Keywords

Comments

For a guide to related sequences, see A001000. - Clark Kimberling, Aug 07 2012

Crossrefs

Cf. A001000.

Programs

  • Mathematica
    leastSeparator[t_] := Module[{n = 1},
    Table[While[Or @@ (Ceiling[n #1[[1]]] <
    2 + Floor[n #1[[2]]] &) /@ (Sort[#1, Greater] &) /@
    Partition[Take[t, k], 2, 1], n++]; n, {k, 2, Length[t]}]];
    t = Flatten[{1/(2*Range[60])}]
    leastSeparator[t]

A024821 Least m such that if r and s in {1/sqrt(h): h = 1,2,...,n} satisfy r < s, then r < k/m < s for some integer k.

Original entry on oeis.org

4, 5, 9, 11, 17, 21, 25, 32, 40, 43, 55, 61, 67, 73, 87, 94, 105, 113, 125, 137, 145, 153, 166, 179, 188, 202, 216, 226, 246, 256, 271, 281, 297, 307, 329, 340, 351, 368, 385, 403, 421, 439, 451, 469, 481, 500, 519, 538, 551, 564, 584, 604, 624, 645, 666, 687, 708, 722, 743
Offset: 2

Views

Author

Keywords

Comments

For a guide to related sequences, see A001000. - Clark Kimberling, Aug 07 2012

Crossrefs

Cf. A001000.

Programs

  • Mathematica
    leastSeparator[seq_] := Module[{n = 1},
    Table[While[Or @@ (Ceiling[n #1[[1]]] <
    2 + Floor[n #1[[2]]] &) /@ (Sort[#1, Greater] &) /@
    Partition[Take[seq, k], 2, 1], n++]; n, {k, 2, Length[seq]}]];
    t = Flatten[Table[1/Sqrt[h], {h, 1, 60}]];
    leastSeparator[t]
    (* Peter J. C. Moses, Aug 01 2012 *)
Previous Showing 11-20 of 36 results. Next