cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 81-87 of 87 results.

A240676 Number of digits in the decimal expansion of n^7.

Original entry on oeis.org

1, 1, 3, 4, 5, 5, 6, 6, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13
Offset: 0

Views

Author

Michelle Tu, Apr 28 2014

Keywords

Examples

			a(1) = 1, because 1^7 = 1.
a(2) = 4, because 2^7 = 1024.
		

Programs

Formula

a(n) = A055642(n^7) = A055642(A001015(n)).

A291829 Numbers k such that k^3 is the sum of two positive 7th powers.

Original entry on oeis.org

32, 4096, 69984, 524288, 2500000, 8957952, 26353376, 67108864, 153055008, 320000000, 623589472, 1146617856, 2007952544, 3373232128, 5467500000, 8589934592, 13130837536, 19591041024, 28603895648, 35723051649, 40960000000, 57634833312, 79819452416, 108954414304
Offset: 1

Views

Author

XU Pingya, Sep 03 2017

Keywords

Comments

When a^7 + b^7 = m, (m^2*a)^7 + (m^2*b)^7 = m^15 is a cube.
When k in this sequence, k*(n^7) (n = 2, 3, ... ) is also in this sequence.

Examples

			32^3 = 4^7 + 4^7, so 32 is in the sequence.
35723051649^3 = 16641^7 + 33282^7, so 35723051649 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    lst={};Do[If[IntegerQ[(n^3-a^7)^(1/7)],AppendTo[lst,n]],{n,1.467*10^11},{a,(n^3/2)^(1/7)}]; lst

A291830 Numbers k such that k^4 is sum of two positive 7th powers.

Original entry on oeis.org

4, 512, 8748, 16641, 65536, 312500, 1119744, 2130048, 3294172, 4787344, 5359225, 8388608, 19131876, 36393867, 40000000, 77948684, 143327232, 250994068, 268468225, 272646144, 344882041, 421654016, 612780032, 683437500, 685980800, 1073741824, 1300078125
Offset: 1

Views

Author

XU Pingya, Sep 03 2017

Keywords

Comments

When a^7 + b^7 = m, (ma)^7 + (mb)^7 = m^8 is 4th power.
When k in this sequence, k*(n^7) (n = 2, 3, ... ) is also in this sequence.

Examples

			4^4 = 2^7 + 2^7, so 4 is in the sequence.
16641^4 = 129^7 + 358^7, so 16641 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    lst={};Do[If[IntegerQ[(n^4-a^7)^(1/7)],AppendTo[lst,n]],{n,1.4*10^9},{a,(n^4/2)^(1/7)}]; lst

A291831 Numbers k such that k^5 is sum of two positive 7th powers.

Original entry on oeis.org

8, 1024, 17496, 131072, 625000, 2146689, 2239488, 6588344, 16777216, 38263752, 80000000, 155897368, 74776192, 86654464, 501988136, 843308032, 1366875000, 2147483648, 3282709384, 4694808843, 4897760256, 7150973912, 10240000000, 10474708672, 12406605875
Offset: 1

Views

Author

XU Pingya, Sep 03 2017

Keywords

Comments

When a^7 + b^7 = m, (m^2*a)^7 + (m^2*b)^7 = m^15 is 5th power.
When k in this sequence, k*(n^7) (n = 2, 3, ... ) is also in this sequence.

Examples

			8^5 = 4^7 + 4^7, so 8 is in the sequence.
2146689^5 = 16641^7 + 33282^7, so 2146689 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    lst={};Do[If[IntegerQ[(n^5-a^7)^(1/7)],AppendTo[lst,n]],{n,1.3*10^10},{a,(n^5/2)^(1/7)}]; lst

A291832 Numbers k such that k^6 is sum of two positive 7th powers.

Original entry on oeis.org

64, 8192, 139968, 1048576, 5000000, 17915904, 52706752, 134217728, 306110016, 640000000, 1247178944, 2293235712, 4015905088, 6746464256, 10935000000, 17179869184, 26261675072, 39182082048, 57207791296, 81920000000, 115269666624, 159638904832, 217908828608
Offset: 1

Views

Author

XU Pingya, Sep 03 2017

Keywords

Comments

When a^7 + b^7 = m, (m^5*a)^7 + (m^5*b)^7 = m^36 is 6th power.
When k in this sequence, k*(n^7) (n = 2, 3, ... ) is also in this sequence.

Examples

			64^6 = 32^7 + 32^7, so 64 is in the sequence.
(5000000)^6 = (500000)^7 + (500000)^7, so 5000000 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    lst={};Do[If[IntegerQ[(n^6-a^7)^(1/7)],AppendTo[lst,n]],{n,2.9*10^11},{a,(n^6/2)^(1/7)}]; lst

A324270 a(n) = 13*7^(7*n).

Original entry on oeis.org

13, 10706059, 8816899947037, 7261096233082692091, 5979824975081619492698413, 4924642999453642161875329137259, 4055655269699050826917294183685688637, 3340006507773765415151949203915063077180891, 2750638979431530091290481703239822791770782516813, 2265269477037980585971637173331233381403285546243728459
Offset: 0

Views

Author

Stefano Spezia, Mar 22 2019

Keywords

Comments

x = a(n) and y = A324266(n) satisfy the Lebesgue-Ramanujan-Nagell equation x^2 + 7^(14*n+3) = 4*y^7 (see Theorem 2.1 in Chakraborty, Hoque and Sharma).

Examples

			For a(0) = 13 and A324266(0) = 2, 13^2 + 7^3 = 512 = 4*2^7.
		

Crossrefs

Cf. A324266 (2*49^n), A001015 (seventh powers), A000420 (powers of 7), A008595 (multiples of 13).

Programs

  • GAP
    List([0..20], n->13*823543^n);
    
  • Magma
    [13*823543^n: n in [0..20]];
    
  • Maple
    a:=n->13*823543^n: seq(a(n), n=0..20);
  • Mathematica
    13 823543^Range[0, 20]
  • PARI
    a(n) = 13*823543^n;

Formula

O.g.f.: 13/(1 - 823543*x).
E.g.f.: 13*exp(823543*x).
a(n) = 823543*a(n-1) for n > 0.
a(n) = 13*823543^n.
a(n) = A008595(A001015((A000420(n)))).

A364654 Numbers which are the sum or difference of two seventh powers.

Original entry on oeis.org

0, 1, 2, 127, 128, 129, 256, 2059, 2186, 2187, 2188, 2315, 4374, 14197, 16256, 16383, 16384, 16385, 16512, 18571, 32768, 61741, 75938, 77997, 78124, 78125, 78126, 78253, 80312, 94509, 156250, 201811, 263552, 277749, 279808, 279935, 279936, 279937, 280064, 282123, 296320
Offset: 1

Views

Author

Geoffrey Caveney, Jul 31 2023

Keywords

Comments

Don Zagier's conjecture that the polynomial x^7 + 3y^7 is injective on rational numbers is equivalent to the non-existence of any term in this sequence that is exactly 3 times another term in this sequence.

Examples

			2059 = 3^7 - 2^7, 2315 = 3^7 + 2^7, 358061 = 6^7 + 5^7, 543607 = 7^7 - 6^7.
		

Crossrefs

Programs

  • PARI
    T=thueinit('z^7+1);
    is(n) = (n==0) || (#thue(T, n)>0); \\ Michel Marcus, Aug 01 2023
Previous Showing 81-87 of 87 results.