cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-22 of 22 results.

A292292 Number of vertices of type C at level n of the hyperbolic Pascal pyramid.

Original entry on oeis.org

0, 0, 0, 1, 3, 9, 34, 174, 1128, 8251, 63315, 494175, 3879370, 30512736, 240149088, 1890487729, 14883249459, 117174190329, 922506823618, 7262871367566, 57180440473320, 450180590519275, 3544264121625315, 27903931958216271, 219687190433359498
Offset: 0

Views

Author

Eric M. Schmidt, Sep 13 2017

Keywords

Crossrefs

Cf. A264236.

Programs

  • Mathematica
    CoefficientList[Series[x^3*(1 - 9*x + 10*x^2)/((1 - x)*(1 - 8*x + x^2)*(1 - 3*x + x^2)), {x, 0, 30}], x] (* Wesley Ivan Hurt, Sep 17 2017 *)
  • PARI
    concat(vector(3), Vec(x^3*(1 - 9*x + 10*x^2) / ((1 - x)*(1 - 8*x + x^2)*(1 - 3*x + x^2)) + O(x^30))) \\ Colin Barker, Sep 17 2017

Formula

a(n) = 12*a(n-1) - 37*a(n-2) + 37*a(n-3) - 12*a(n-4) + a(n-5), n >= 6.
G.f.: x^3*(1 - 9*x + 10*x^2) / ((1 - x)*(1 - 8*x + x^2)*(1 - 3*x + x^2)). - Colin Barker, Sep 17 2017
a(n) = A001091(n-3)/15 + 3*A002878(n-3)/5 + 1/3 for n > 0. - Ehren Metcalfe, Apr 18 2019

A292294 Number of vertices of type E at level n of the hyperbolic Pascal pyramid.

Original entry on oeis.org

0, 0, 0, 0, 3, 39, 357, 2952, 23622, 186984, 1474773, 11617815, 91485075, 720308160, 5671099008, 44648794944, 351520074867, 2767513935927, 21788596994037, 171541276628904, 1350541654293318, 10632792057873480, 83711795070905925, 659061569195852295
Offset: 0

Views

Author

Eric M. Schmidt, Sep 13 2017

Keywords

Crossrefs

Cf. A264236.

Programs

  • Mathematica
    CoefficientList[Series[3*x^4*(1 + x)/((1 - x)*(1 - 8*x + x^2)*(1 - 3*x + x^2)), {x, 0, 30}], x] (* Wesley Ivan Hurt, Sep 17 2017 *)
    LinearRecurrence[{12,-37,37,-12,1},{0,0,0,0,3,39},30] (* Harvey P. Dale, Oct 09 2018 *)
  • PARI
    concat(vector(4), Vec(3*x^4*(1 + x) / ((1 - x)*(1 - 8*x + x^2)*(1 - 3*x + x^2)) + O(x^30))) \\ Colin Barker, Sep 17 2017

Formula

a(n) = 12*a(n-1) - 37*a(n-2) + 37*a(n-3) - 12*a(n-4) + a(n-5), n >= 6.
G.f.: 3*x^4*(1 + x) / ((1 - x)*(1 - 8*x + x^2)*(1 - 3*x + x^2)). - Colin Barker, Sep 17 2017
a(n) = 1 + (A001091(n-2) - 3*Lucas(2*(2-n)))/5 for n > 0. - Ehren Metcalfe, Apr 18 2019
Previous Showing 21-22 of 22 results.