cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-22 of 22 results.

A364305 a(n) = (8*n)!*(5*n)!*(3*n)! / ( (6*n)!*(4*n)!^2*n!^2 ).

Original entry on oeis.org

1, 70, 17550, 5567380, 1960044750, 732012601320, 283986961467300, 113142133870180800, 45969979122504907470, 18961650930856541865100, 7915377251895103264073800, 3336455614603881320759754000, 1417729131896719482585245182500, 606517077508008639090614765297280
Offset: 0

Views

Author

Peter Bala, Jul 21 2023

Keywords

Crossrefs

Row 8 of A364303.

Programs

  • Maple
    seq( (8*n)!*(5*n)!*(3*n)! / ( (6*n)!*(4*n)!^2*n!^2 ), n = 0..13);
  • Mathematica
    A364305[n_]:=(8n)!(5n)!(3n)!/((6n)!(4n)!^2n!^2);Array[A364305,15,0] (* Paolo Xausa, Oct 06 2023 *)

Formula

a(n) = Sum_{k = 0..n} binomial(8*n, n-k)^2 * binomial(6*n+k-1, k).
a(n) = [x^n] (1 - x)^(2*n) * P(8*n,(1 + x)/(1 - x)), where P(n,x) denotes the n-th Legendre polynomial.
a(n) = (5/12)*(5*n-1)*(5*n-2)*(5*n-3)*(5*n-4)*(8*n-1)*(8*n-3)*(8*n-5)*(8*n-7)/((4*n-1)*(4*n-3)*(6*n-1)*(6*n-5)*n^2*(2*n-1)^2) * a(n-1) with a(0) = 1.
a(n) ~ c^n * sqrt(5)/(4*Pi*n), where c = (2^2)*(5^5)/(3^3).
a(n) = binomial(8*n,2*n)*binomial(5*n,n)*binomial(2*n,n)/binomial(4*n,n) = A001449(n) * A211421(n).
a(p) == a(1) (mod p^3) for all primes p >= 5.
Conjecture: the supercongruences a(n*p^k) == a(n*p^(k-1)) (mod p^(3*k)) hold for all primes p >= 5 and all positive integers n and k [added 16 Oct 2024: the conjecture follows from Meštrović, equation 39, since a(n) = binomial(8*n, 2*n)*binomial(5*n, n)* binomial(2*n, n)/binomial(4*n, n)].
a(n) = [x^n] G(x)^(10*n), where the power series G(x) = 1 + 7*x + 412*x^2 + 55524*x^3 + 10088066*x^4 + 2146473322*x^5 + 503731865112*x^6 + ... appears to have integer coefficients.
exp(Sum_{n >= 1} a(n)*x^n/n) = F(x)^10, where the power series F(x) = 1 + 7*x + 902*x^2 + 191779*x^3 + 50706776*x^4 + 15153397742*x^5 + 4898289306180*x^6 + ... appears to have integer coefficients.
From Peter Bala, Oct 16 2024: (Start)
For integer r and positive integer s, define sequences u(n) = { [x^(s*n)] G(x)^(r*n) : n >= 0 } and v(n) = { [x^(s*n)] F(x)^(r*n) : n >= 0 }, with the power series F(x) and G(x) as defined above. We conjecture that both sequences {u(n)} and {v(n)} satisfy the above supercongruences mod p^(3*k). (End)

A386371 a(n) = Sum_{k=0..n} (-3)^(n-k) * binomial(5*n+1,k).

Original entry on oeis.org

1, 3, 31, 317, 3399, 37418, 419229, 4756104, 54463335, 628197809, 7287712566, 84942987198, 993941174829, 11668806723876, 137378189197112, 1621322803014672, 19175540677541991, 227217662222902443, 2696878158795639549, 32057403690640189635, 381573145993865438254
Offset: 0

Views

Author

Seiichi Manyama, Aug 17 2025

Keywords

Crossrefs

Programs

  • Magma
    [&+[(-3)^(n-k) * Binomial(5*n+1,k): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Aug 31 2025
  • Mathematica
    Table[Sum[(-3)^(n-k)*Binomial[5*n+1,k],{k,0,n}],{n,0,25}] (* Vincenzo Librandi, Aug 31 2025 *)
  • PARI
    a(n) = sum(k=0, n, (-3)^(n-k)*binomial(5*n+1, k));
    

Formula

a(n) = [x^n] (1+x)^(5*n+1)/(1+3*x).
a(n) = [x^n] 1/((1-x)^(4*n+1) * (1+2*x)).
a(n) = Sum_{k=0..n} (-2)^k * 3^(n-k) * binomial(5*n+1,k) * binomial(5*n-k,n-k).
a(n) = Sum_{k=0..n} (-2)^k * binomial(5*n-k,n-k).
G.f.: 1/(1 - x*g^3*(-10+13*g)) where g = 1+x*g^5 is the g.f. of A002294.
G.f.: g^2/((-2+3*g) * (5-4*g)) where g = 1+x*g^5 is the g.f. of A002294.
G.f.: B(x)^2/(1 + 7*(B(x)-1)/5), where B(x) is the g.f. of A001449.
D-finite with recurrence 648*n*(135551509682187347695*n -244103380745409504343) *(4*n-1)*(2*n-1)*(4*n-3)*a(n) +(-33979500619583537984836075*n^5 +130803893690808003041848009*n^4 -168380151442376797602371231*n^3 +62069291513227826684567999*n^2 +49760069127090078338544954*n -39530305857276050670355320)*a(n-1) +40*(-108999332467309598098777*n^5 -28981701912184019189355*n^4 -1554974299825191814369159*n^3 +13581461461293413639358363*n^2 -28599284433109723900055776*n +18909354537435947334628944)*a(n-2) +211200*(5*n-11) *(5*n-9)*(28440609019752807*n +93502568692163852)*(5*n-13)*(5*n-12)*a(n-3)=0. - R. J. Mathar, Aug 26 2025
Previous Showing 21-22 of 22 results.