cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 75 results. Next

A296835 Expansion of e.g.f. exp(x*tan(x/2)) (even powers only).

Original entry on oeis.org

1, 1, 4, 33, 451, 9110, 253401, 9246881, 427272364, 24332740569, 1671761966755, 136185663849422, 12966840876896193, 1425738305622057713, 179172604156015950676, 25507107918052543195905, 4081610970381242583997171, 729135575105289450378655526
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 21 2017

Keywords

Examples

			exp(x*tan(x/2)) = 1 + x^2/2! + 4*x^4/4! + 33*x^6/6! + 451*x^8/8! + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 17; Table[(CoefficientList[Series[Exp[x Tan[x/2]], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]

Formula

a(n) = (2*n)! * [x^(2*n)] exp(x*tan(x/2)).

A296837 Expansion of e.g.f. log(1 + x*tan(x/2)) (even powers only).

Original entry on oeis.org

0, 1, -2, 18, -312, 9470, -436860, 28616322, -2522596496, 288046961190, -41355026494020, 7291524732108650, -1548849359704927896, 390122366308850972238, -114968364853645904762252, 39189956630839558368115410, -15300235972710835734174638880
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 21 2017

Keywords

Examples

			log(1 + x*tan(x/2)) = x^2/2! - 2*x^4/4! + 18*x^6/6! - 312*x^8/8! + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 16; Table[(CoefficientList[Series[Log[1 + x Tan[x/2]], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]

Formula

a(n) = (2*n)! * [x^(2*n)] log(1 + x*tan(x/2)).
a(n) ~ -(-1)^n * sqrt(Pi) * 2^(2*n + 1) * n^(2*n - 1/2) / (r^(2*n) * exp(2*n)), where r = 1.54340463841820844795870974005331555369788376471926269... is the root of the equation r*tanh(r/2) = 1. - Vaclav Kotesovec, Dec 21 2017

A296838 Expansion of e.g.f. log(1 + x*tanh(x/2)) (even powers only).

Original entry on oeis.org

0, 1, -4, 48, -1186, 50060, -3226206, 294835184, -36270477034, 5779302944436, -1157856177719830, 284876691727454552, -84442374415240892898, 29680054107768128647388, -12205478262363331593956686, 5805823539844285054558025280, -3163004294186696659107788567386
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 21 2017

Keywords

Examples

			log(1 + x*tanh(x/2)) = x^2/2! - 4*x^4/4! + 48*x^6/6! - 1186*x^8/8! + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 16; Table[(CoefficientList[Series[Log[1 + x Tanh[x/2]], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]

Formula

a(n) = (2*n)! * [x^(2*n)] log(1 + x*tanh(x/2)).
a(n) ~ -(-1)^n * sqrt(Pi) * 2^(2*n + 1) * n^(2*n - 1/2) / (r^(2*n) * exp(2*n)), where r = 1.306542374188806202228727831923118284841279755635... is the root of the equation r * tan(r/2) = 1. - Vaclav Kotesovec, Dec 21 2017

A296939 Expansion of e.g.f. sec(x*tan(x/2)) (even powers only).

Original entry on oeis.org

1, 0, 3, 15, 644, 17145, 1124673, 74115496, 7730031915, 921044459943, 145334164141820, 26830525240048761, 6053646614467427553, 1586816790903080698000, 487642998132913180824819, 171640559783810345998524735, 69078935661419038650738789428
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 22 2017

Keywords

Examples

			sec(x*tan(x/2)) = 1 + 3*x^4/4! + 15*x^6/6! + 644*x^8/8! + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 16; Table[(CoefficientList[Series[Sec[x Tan[x/2]], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]

Formula

a(n) = (2*n)! * [x^(2*n)] sec(x*tan(x/2)).

A296940 Expansion of e.g.f. sech(x*tan(x/2)) (even powers only).

Original entry on oeis.org

1, 0, -3, -15, 406, 14355, -189123, -42283696, -837846615, 284972761557, 28521503291230, -3070544172379761, -1054107683427761463, 1143265731049052000, 54900209444888714822181, 7959249060310612253252265, -3679623847504649619798598778, -1631286181830482909037469295781
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 22 2017

Keywords

Examples

			sech(x*tan(x/2)) = 1 - 3*x^4/4! - 15*x^6/6! + 406*x^8/8! + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 17; Table[(CoefficientList[Series[Sech[x Tan[x/2]], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]

Formula

a(n) = (2*n)! * [x^(2*n)] sech(x*tan(x/2)).

A297703 The Genocchi triangle read by rows, T(n,k) for n>=0 and 0<=k<=n.

Original entry on oeis.org

1, 1, 1, 2, 3, 3, 8, 14, 17, 17, 56, 104, 138, 155, 155, 608, 1160, 1608, 1918, 2073, 2073, 9440, 18272, 25944, 32008, 36154, 38227, 38227, 198272, 387104, 557664, 702280, 814888, 891342, 929569, 929569, 5410688, 10623104, 15448416, 19716064, 23281432, 26031912
Offset: 0

Views

Author

Peter Luschny, Jan 03 2018

Keywords

Examples

			The triangle starts:
0: [     1]
1: [     1,      1]
2: [     2,      3,      3]
3: [     8,     14,     17,     17]
4: [    56,    104,    138,    155,    155]
5: [   608,   1160,   1608,   1918,   2073,   2073]
6: [  9440,  18272,  25944,  32008,  36154,  38227,  38227]
7: [198272, 387104, 557664, 702280, 814888, 891342, 929569, 929569]
		

Crossrefs

Row sums are A005439 with offset 0.
T(n,0) = A005439 with A005439(0) = 1.
T(n,n) = A110501 with offset 0.

Programs

  • Julia
    function A297703Triangle(len::Int)
        A = fill(BigInt(0), len+2); A[2] = 1
        for n in 2:len+1
            for k in n:-1:2 A[k] += A[k+1] end
            for k in 2: 1:n A[k] += A[k-1] end
            println(A[2:n])
        end
    end
    println(A297703Triangle(9))
    
  • Python
    from functools import cache
    @cache
    def T(n):  # returns row n
        if n == 0: return [1]
        row = [0] + T(n - 1) + [0]
        for k in range(n, 0, -1): row[k] += row[k + 1]
        for k in range(2, n + 2): row[k] += row[k - 1]
        return row[1:]
    for n in range(9): print(T(n))  # Peter Luschny, Jun 03 2022

A065747 Triangle of Gandhi polynomial coefficients.

Original entry on oeis.org

1, 1, 3, 3, 7, 30, 51, 42, 15, 145, 753, 1656, 1995, 1410, 567, 105, 6631, 39048, 100704, 149394, 140475, 86562, 34566, 8316, 945, 566641, 3656439, 10546413, 17972598, 20133921, 15581349, 8493555, 3246642, 841239, 135135, 10395
Offset: 1

Views

Author

Mike Domaratzki (mdomaratzki(AT)alumni.uwaterloo.ca), Nov 16 2001

Keywords

Comments

First column is A064624.

Examples

			Triangle starts
1;
1, 3, 3;
7, 30, 51, 42, 15;
145, 753, 1656, 1995, 1410, 567, 105;
6631 ...
		

Crossrefs

Formula

Let B(X, n) = X^3 (B(X+1, n-1) - B(X, n-1)), B(X, 1) = X^3; then the (i, j)-th entry is the table is the coefficient of X^(2+j) in B(X, i).

A065756 Generalization of the Genocchi numbers given by the Gandhi polynomials A(n+1,r) = r^5 A(n, r + 1) - (r - 1)^5 A(n, r); A(1,r) = r^5 - (r-1)^5.

Original entry on oeis.org

1, 1, 31, 6721, 5850271, 15060446401, 94396946822431, 1258620297379341121, 32323181593821704288671, 1481630482369728860007652801, 114129022540066183425609121804831
Offset: 1

Views

Author

Mike Domaratzki (mdomaratzki(AT)alumni.uwaterloo.ca), Nov 17 2001

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_ /; n >= 0, r_ /; r >= 0] := a[n, r] = r^5*a[n-1, r+1]-(r-1)^5*a[n-1, r]; a[1, r_ /; r >= 0] := r^5-(r-1)^5; a[, ] = 1; a[n_] := a[n-1, 1]; Table[a[n], {n, 0, 10}] (* Jean-François Alcover, May 23 2013 *)

Formula

a(n) = A(n-1, 1) for the above Gandhi polynomials.

A240485 a(n) = -Zeta(1-n)*n*(2^(n+1) - 4) - Zeta(-n)*(n+1)*(2^(n+2) - 2), for n = 0 the limit is understood.

Original entry on oeis.org

1, 3, 2, -1, -2, 3, 6, -17, -34, 155, 310, -2073, -4146, 38227, 76454, -929569, -1859138, 28820619, 57641238, -1109652905, -2219305810, 51943281731, 103886563462, -2905151042481, -5810302084962, 191329672483963, 382659344967926, -14655626154768697
Offset: 0

Views

Author

Paul Curtz, Apr 06 2014

Keywords

Comments

Let G(m, n) denote the difference table of a(n):
1, 3, 2, -1, -2, 3, 6, -17, -34,...
2, -1, -3, -1, 5, 3, -23, -17,...
-3, -2, 2, 6, -2, -26, 6,...
1, 4, 4, -8, -24, 32,...
3, 0, -12, -16, 56,...
-3, -12, -4, 72,...
-9, 8, 76,...
17, 68,...
51,...
a(n) = G(0, n).
The main diagonal G(n, n) = 1, -1, 2, -8, 56, -608,... is essentially a signed version of A005439.
The first upper diagonal is the main diagonal multiplied by 3. G(n, n+1) = 3*G(n, n).
G(m, n) = G(m, n-1) + G(m+1,n-1).
Inverse binomial transform: after 1, 2, -3, A110501(n+1) is interleaved with 3*A110501(n+1), signed two by two. I. e. b(n) = 1, 2, -3, 1, 3, -3, -9, 17, 51,... . a(n+2) + b(n+2) = -1, 0, 1, 0, -3, 0, 17,... = A226158(n+2).
This is particular to the Genocchi numbers. If the first upper diagonal is proportional to the main diagonal (1, -1, 2, -8,...), the sequence and the inverse binomial transform are simply connected to the Genocchi numbers.

Crossrefs

Programs

  • Maple
    A240485 := proc(n) if n = 0 then 1 elif n = 1 then 3 else
    m := 2*iquo(n-1, 2) + 2; -2^irem(n-1, 2)*m*euler(m-1, 0) fi end:
    seq(A240485(n), n=0..27); # Peter Luschny, Apr 09 2014
  • Mathematica
    a[n_] := Which[n == 0, 1, n == 1, 3, True, m = 2*Quotient[n-1, 2]+2; -2^Mod[n-1, 2]*m*EulerE[m-1, 0]]; Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Apr 09 2014, after Peter Luschny *)
  • Sage
    def A240485(n):
        if n < 3: return [1,3,2][n]
        m = 2*((n+1)//2)
        b = 2*(1-2^m)*bernoulli(m)
        if is_even(n): b = 2*b
        return (-1)^ceil((n^2+1)/2)*b
    [A240485(n) for n in (0..24)]  # Peter Luschny, Apr 08 2014

Formula

a(2*n+1) = a(2*n+2)/2 for n > 0.
-a(2*n+2)/2 = A226158(2*n+2) = A001469(n+1) = (2*n+2)*E(2*n+1, 0) where E(n, x) are the Euler polynomials.
a(n) = -2*A226158(n) - A226158(n+1).
E.g.f.: (2*exp(x)*(3*x+exp(x)*(2*x+1)+1))/(exp(x)+1)^2. - Peter Luschny, Apr 10 2014

A263445 a(n) = (2n+1)*(n+1)!*Bernoulli(2n).

Original entry on oeis.org

1, 1, -1, 4, -36, 600, -16584, 705600, -43751232, 3790108800, -443539877760, 68218849036800, -13478425925184000, 3355402067989171200, -1035218714714606822400, 390189256983139461120000, -177430554756972746695065600, 96269372301568677170319360000
Offset: 0

Views

Author

Vladimir Reshetnikov, Oct 18 2015

Keywords

Crossrefs

Bernoulli numbers are A000367/A002445. Cf. A004193, A001332, A000182, A001469.

Programs

  • Maple
    seq((2*n+1)*(n+1)!*bernoulli(2*n), n=0..50); # Robert Israel, Oct 18 2015
  • Mathematica
    Table[(2n + 1) (n + 1)! BernoulliB[2n], {n, 0, 17}]
  • PARI
    vector(30, n, n--; (2*n+1)*(n+1)!*bernfrac(2*n)) \\ Altug Alkan, Oct 18 2015
    
  • Python
    from math import factorial
    from sympy import bernoulli
    def A263445(n): return (2*n+1)*factorial(n+1)*bernoulli(2*n) # Chai Wah Wu, May 18 2022

Formula

a(n) = (2n+1)*(n+1)!*Bernoulli(2n).
a(n) ~ (-1)^(n+1)*8*sqrt(2)*n^3*(n/e)^(3*n)*Pi^(1-2*n). - Vladimir Reshetnikov, Sep 05 2016
Previous Showing 41-50 of 75 results. Next