A296835
Expansion of e.g.f. exp(x*tan(x/2)) (even powers only).
Original entry on oeis.org
1, 1, 4, 33, 451, 9110, 253401, 9246881, 427272364, 24332740569, 1671761966755, 136185663849422, 12966840876896193, 1425738305622057713, 179172604156015950676, 25507107918052543195905, 4081610970381242583997171, 729135575105289450378655526
Offset: 0
exp(x*tan(x/2)) = 1 + x^2/2! + 4*x^4/4! + 33*x^6/6! + 451*x^8/8! + ...
-
nmax = 17; Table[(CoefficientList[Series[Exp[x Tan[x/2]], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]
A296837
Expansion of e.g.f. log(1 + x*tan(x/2)) (even powers only).
Original entry on oeis.org
0, 1, -2, 18, -312, 9470, -436860, 28616322, -2522596496, 288046961190, -41355026494020, 7291524732108650, -1548849359704927896, 390122366308850972238, -114968364853645904762252, 39189956630839558368115410, -15300235972710835734174638880
Offset: 0
log(1 + x*tan(x/2)) = x^2/2! - 2*x^4/4! + 18*x^6/6! - 312*x^8/8! + ...
-
nmax = 16; Table[(CoefficientList[Series[Log[1 + x Tan[x/2]], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]
A296838
Expansion of e.g.f. log(1 + x*tanh(x/2)) (even powers only).
Original entry on oeis.org
0, 1, -4, 48, -1186, 50060, -3226206, 294835184, -36270477034, 5779302944436, -1157856177719830, 284876691727454552, -84442374415240892898, 29680054107768128647388, -12205478262363331593956686, 5805823539844285054558025280, -3163004294186696659107788567386
Offset: 0
log(1 + x*tanh(x/2)) = x^2/2! - 4*x^4/4! + 48*x^6/6! - 1186*x^8/8! + ...
-
nmax = 16; Table[(CoefficientList[Series[Log[1 + x Tanh[x/2]], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]
A296939
Expansion of e.g.f. sec(x*tan(x/2)) (even powers only).
Original entry on oeis.org
1, 0, 3, 15, 644, 17145, 1124673, 74115496, 7730031915, 921044459943, 145334164141820, 26830525240048761, 6053646614467427553, 1586816790903080698000, 487642998132913180824819, 171640559783810345998524735, 69078935661419038650738789428
Offset: 0
sec(x*tan(x/2)) = 1 + 3*x^4/4! + 15*x^6/6! + 644*x^8/8! + ...
Cf.
A000364,
A001469,
A009010,
A110501,
A296839,
A296841,
A296842,
A296853,
A296854,
A296856,
A296940.
-
nmax = 16; Table[(CoefficientList[Series[Sec[x Tan[x/2]], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]
A296940
Expansion of e.g.f. sech(x*tan(x/2)) (even powers only).
Original entry on oeis.org
1, 0, -3, -15, 406, 14355, -189123, -42283696, -837846615, 284972761557, 28521503291230, -3070544172379761, -1054107683427761463, 1143265731049052000, 54900209444888714822181, 7959249060310612253252265, -3679623847504649619798598778, -1631286181830482909037469295781
Offset: 0
sech(x*tan(x/2)) = 1 - 3*x^4/4! - 15*x^6/6! + 406*x^8/8! + ...
Cf.
A000364,
A001469,
A009011,
A110501,
A296839,
A296841,
A296842,
A296853,
A296854,
A296856,
A296939.
-
nmax = 17; Table[(CoefficientList[Series[Sech[x Tan[x/2]], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]
A297703
The Genocchi triangle read by rows, T(n,k) for n>=0 and 0<=k<=n.
Original entry on oeis.org
1, 1, 1, 2, 3, 3, 8, 14, 17, 17, 56, 104, 138, 155, 155, 608, 1160, 1608, 1918, 2073, 2073, 9440, 18272, 25944, 32008, 36154, 38227, 38227, 198272, 387104, 557664, 702280, 814888, 891342, 929569, 929569, 5410688, 10623104, 15448416, 19716064, 23281432, 26031912
Offset: 0
The triangle starts:
0: [ 1]
1: [ 1, 1]
2: [ 2, 3, 3]
3: [ 8, 14, 17, 17]
4: [ 56, 104, 138, 155, 155]
5: [ 608, 1160, 1608, 1918, 2073, 2073]
6: [ 9440, 18272, 25944, 32008, 36154, 38227, 38227]
7: [198272, 387104, 557664, 702280, 814888, 891342, 929569, 929569]
Row sums are
A005439 with offset 0.
-
function A297703Triangle(len::Int)
A = fill(BigInt(0), len+2); A[2] = 1
for n in 2:len+1
for k in n:-1:2 A[k] += A[k+1] end
for k in 2: 1:n A[k] += A[k-1] end
println(A[2:n])
end
end
println(A297703Triangle(9))
-
from functools import cache
@cache
def T(n): # returns row n
if n == 0: return [1]
row = [0] + T(n - 1) + [0]
for k in range(n, 0, -1): row[k] += row[k + 1]
for k in range(2, n + 2): row[k] += row[k - 1]
return row[1:]
for n in range(9): print(T(n)) # Peter Luschny, Jun 03 2022
A065747
Triangle of Gandhi polynomial coefficients.
Original entry on oeis.org
1, 1, 3, 3, 7, 30, 51, 42, 15, 145, 753, 1656, 1995, 1410, 567, 105, 6631, 39048, 100704, 149394, 140475, 86562, 34566, 8316, 945, 566641, 3656439, 10546413, 17972598, 20133921, 15581349, 8493555, 3246642, 841239, 135135, 10395
Offset: 1
Mike Domaratzki (mdomaratzki(AT)alumni.uwaterloo.ca), Nov 16 2001
Triangle starts
1;
1, 3, 3;
7, 30, 51, 42, 15;
145, 753, 1656, 1995, 1410, 567, 105;
6631 ...
- Michael Domaratzki, Combinatorial Interpretations of a Generalization of the Genocchi Numbers, Journal of Integer Sequences, Vol. 7 (2004), Article 04.3.6.
- D. Dumont, Sur une conjecture de Gandhi concernant les nombres de Genocchi, (in French), Discrete Mathematics 1 (1972) 321-327.
- D. Dumont, Interprétations combinatoires des nombres de Genocchi, Duke Math. J., 41 (1974), 305-318.
- D. Dumont, Interprétations combinatoires des nombres de Genocchi, Duke Math. J., 41 (1974), 305-318. (Annotated scanned copy)
A065756
Generalization of the Genocchi numbers given by the Gandhi polynomials A(n+1,r) = r^5 A(n, r + 1) - (r - 1)^5 A(n, r); A(1,r) = r^5 - (r-1)^5.
Original entry on oeis.org
1, 1, 31, 6721, 5850271, 15060446401, 94396946822431, 1258620297379341121, 32323181593821704288671, 1481630482369728860007652801, 114129022540066183425609121804831
Offset: 1
Mike Domaratzki (mdomaratzki(AT)alumni.uwaterloo.ca), Nov 17 2001
- M. Domaratzki, A Generalization of the Genocchi Numbers with Applications to Enumeration of Finite Automata, Technical Report 2001-449, Department of Computing and Information Science, Queen's University at Kingston (Kingston, Canada).
- Michael Domaratzki, Combinatorial Interpretations of a Generalization of the Genocchi Numbers, Journal of Integer Sequences, Vol. 7 (2004), Article 04.3.6.
- D. Dumont, Sur une conjecture de Gandhi concernant les nombres de Genocchi, (in French), Discrete Mathematics 1 (1972) 321-327.
- D. Dumont, Interprétations combinatoires des nombres de Genocchi, Duke Math. J., 41 (1974), 305-318.
- D. Dumont, Interprétations combinatoires des nombres de Genocchi, Duke Math. J., 41 (1974), 305-318. (Annotated scanned copy)
-
a[n_ /; n >= 0, r_ /; r >= 0] := a[n, r] = r^5*a[n-1, r+1]-(r-1)^5*a[n-1, r]; a[1, r_ /; r >= 0] := r^5-(r-1)^5; a[, ] = 1; a[n_] := a[n-1, 1]; Table[a[n], {n, 0, 10}] (* Jean-François Alcover, May 23 2013 *)
A240485
a(n) = -Zeta(1-n)*n*(2^(n+1) - 4) - Zeta(-n)*(n+1)*(2^(n+2) - 2), for n = 0 the limit is understood.
Original entry on oeis.org
1, 3, 2, -1, -2, 3, 6, -17, -34, 155, 310, -2073, -4146, 38227, 76454, -929569, -1859138, 28820619, 57641238, -1109652905, -2219305810, 51943281731, 103886563462, -2905151042481, -5810302084962, 191329672483963, 382659344967926, -14655626154768697
Offset: 0
-
A240485 := proc(n) if n = 0 then 1 elif n = 1 then 3 else
m := 2*iquo(n-1, 2) + 2; -2^irem(n-1, 2)*m*euler(m-1, 0) fi end:
seq(A240485(n), n=0..27); # Peter Luschny, Apr 09 2014
-
a[n_] := Which[n == 0, 1, n == 1, 3, True, m = 2*Quotient[n-1, 2]+2; -2^Mod[n-1, 2]*m*EulerE[m-1, 0]]; Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Apr 09 2014, after Peter Luschny *)
-
def A240485(n):
if n < 3: return [1,3,2][n]
m = 2*((n+1)//2)
b = 2*(1-2^m)*bernoulli(m)
if is_even(n): b = 2*b
return (-1)^ceil((n^2+1)/2)*b
[A240485(n) for n in (0..24)] # Peter Luschny, Apr 08 2014
A263445
a(n) = (2n+1)*(n+1)!*Bernoulli(2n).
Original entry on oeis.org
1, 1, -1, 4, -36, 600, -16584, 705600, -43751232, 3790108800, -443539877760, 68218849036800, -13478425925184000, 3355402067989171200, -1035218714714606822400, 390189256983139461120000, -177430554756972746695065600, 96269372301568677170319360000
Offset: 0
-
seq((2*n+1)*(n+1)!*bernoulli(2*n), n=0..50); # Robert Israel, Oct 18 2015
-
Table[(2n + 1) (n + 1)! BernoulliB[2n], {n, 0, 17}]
-
vector(30, n, n--; (2*n+1)*(n+1)!*bernfrac(2*n)) \\ Altug Alkan, Oct 18 2015
-
from math import factorial
from sympy import bernoulli
def A263445(n): return (2*n+1)*factorial(n+1)*bernoulli(2*n) # Chai Wah Wu, May 18 2022
Comments