cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A319932 a(n) = (1/720)*n*(n - 10)*(n - 1)*(n^3 - 34*n^2 + 181*n - 144).

Original entry on oeis.org

0, 0, -2, -7, -10, -5, 11, 35, 56, 54, 0, -143, -418, -871, -1547, -2485, -3712, -5236, -7038, -9063, -11210, -13321, -15169, -16445, -16744, -15550, -12220, -5967, 4158, 19285, 40745, 70091, 109120, 159896, 224774, 306425, 407862, 532467, 684019, 866723
Offset: 0

Views

Author

Peter Luschny, Oct 02 2018

Keywords

Crossrefs

Cf. A000012 (m=0), A001489 (m=1), A080956 (m=2), A167541 (m=3), A319930 (m=4), A319931 (m=5), this sequence (m=6).
Cf. A319933.

Programs

  • Maple
    a := n -> (1/720)*n*(n-10)*(n-1)*(n^3-34*n^2+181*n-144);
    seq(a(n), n=0..39);

Formula

a(n) = [x^5] DedekindEta(x)^n.
a(n) = A319933(n, 5).

A286932 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of continued fraction 1/(1 + k*x/(1 + k*x^2/(1 + k*x^3/(1 + k*x^4/(1 + k*x^5/(1 + ...)))))).

Original entry on oeis.org

1, 1, 0, 1, -1, 0, 1, -2, 1, 0, 1, -3, 4, 0, 0, 1, -4, 9, -4, -1, 0, 1, -5, 16, -18, 0, 1, 0, 1, -6, 25, -48, 27, 8, -1, 0, 1, -7, 36, -100, 128, -27, -24, 1, 0, 1, -8, 49, -180, 375, -320, -27, 48, 0, 0, 1, -9, 64, -294, 864, -1375, 704, 243, -64, -1, 0, 1, -10, 81, -448, 1715, -4104, 4875, -1280, -810, 48, 2, 0
Offset: 0

Views

Author

Ilya Gutkovskiy, May 16 2017

Keywords

Examples

			G.f. of column k: A(x) = 1 - k*x + k^2*x^2 - (k - 1)*k^2*x^3 + (k - 2)*k^3*x^4 - k^3*(k^2 - 3*k + 1)*x^5 + ...
Square array begins:
  1,  1,  1,   1,    1,     1,  ...
  0, -1, -2,  -3,   -4,    -5,  ...
  0,  1,  4,   9,   16,    25,  ...
  0,  0, -4, -18,  -48,  -100,  ...
  0, -1,  0,  27,  128,   375,  ...
  0,  1,  8, -27, -320, -1375,  ...
		

Crossrefs

Columns k=0..1 give: A000007, A007325.
Rows n=0..3 give: A000012, A001489, A000290, A045991 (gives absolute value).
Main diagonal gives A291335.
Cf. A286509.

Programs

  • Mathematica
    Table[Function[k, SeriesCoefficient[1/(1 + ContinuedFractionK[k x^i, 1, {i, 1, n}]), {x, 0, n}]][j - n], {j, 0, 11}, {n, 0, j}] // Flatten

Formula

G.f. of column k: 1/(1 + k*x/(1 + k*x^2/(1 + k*x^3/(1 + k*x^4/(1 + k*x^5/(1 + ...)))))), a continued fraction.
G.f. of column k (for k > 0): (Sum_{j>=0} k^j*x^(j*(j+1))/Product_{i=1..j} (1 - x^i)) / (Sum_{j>=0} k^j*x^(j^2)/Product_{i=1..j} (1 - x^i)).

A326728 A(n, k) = n*(k - 1)*k/2 - k, square array for n >= 0 and k >= 0 read by ascending antidiagonals.

Original entry on oeis.org

0, 0, -1, 0, -1, -2, 0, -1, -1, -3, 0, -1, 0, 0, -4, 0, -1, 1, 3, 2, -5, 0, -1, 2, 6, 8, 5, -6, 0, -1, 3, 9, 14, 15, 9, -7, 0, -1, 4, 12, 20, 25, 24, 14, -8, 0, -1, 5, 15, 26, 35, 39, 35, 20, -9, 0, -1, 6, 18, 32, 45, 54, 56, 48, 27, -10
Offset: 0

Views

Author

Peter Luschny, Aug 04 2019

Keywords

Comments

A formal extension of the figurative numbers A139600 to negative n.

Examples

			[0] 0, -1, -2, -3, -4, -5, -6,  -7,  -8,  -9, -10, ... A001489
[1] 0, -1, -1,  0,  2,  5,  9,  14,  20,  27,  35, ... A080956
[2] 0, -1,  0,  3,  8, 15, 24,  35,  48,  63,  80, ... A067998
[3] 0, -1,  1,  6, 14, 25, 39,  56,  76,  99, 125, ... A095794
[4] 0, -1,  2,  9, 20, 35, 54,  77, 104, 135, 170, ... A014107
[5] 0, -1,  3, 12, 26, 45, 69,  98, 132, 171, 215, ... A326725
[6] 0, -1,  4, 15, 32, 55, 84, 119, 160, 207, 260, ... A270710
[7] 0, -1,  5, 18, 38, 65, 99, 140, 188, 243, 305, ...
		

Crossrefs

Cf. A001489 (n=0), A080956 (n=1), A067998 (n=2), A095794 (n=3), A014107 (n=4), A326725 (n=5), A270710 (n=6).
Columns include A008585, A016933, A017329.
Cf. A139600.

Programs

  • Maple
    A := (n, k) -> n*(k - 1)*k/2 - k:
    seq(seq(A(n - k, k), k=0..n), n=0..11);
  • Python
    def A326728Row(n):
        x, y = 1, 1
        yield 0
        while True:
            yield -x
            x, y = x + y - n, y - n
    for n in range(8):
        R = A326728Row(n)
    print([next(R) for _ in range(11)])

A291701 Square array A(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of k-th power of continued fraction 1 - x/(1 - x^2/(1 - x^3/(1 - x^4/(1 - x^5/(1 - ...))))).

Original entry on oeis.org

1, 1, 0, 1, -1, 0, 1, -2, 0, 0, 1, -3, 1, -1, 0, 1, -4, 3, -2, 0, 0, 1, -5, 6, -4, 2, -1, 0, 1, -6, 10, -8, 6, -2, -1, 0, 1, -7, 15, -15, 13, -6, 1, -1, 0, 1, -8, 21, -26, 25, -16, 6, 0, -2, 0, 1, -9, 28, -42, 45, -36, 18, -3, 0, -2, 0, 1, -10, 36, -64, 77, -72
Offset: 0

Views

Author

Seiichi Manyama, Aug 30 2017

Keywords

Examples

			Square array begins:
   1,  1,  1,  1,  1, ...
   0, -1, -2, -3, -4, ...
   0,  0,  1,  3,  6, ...
   0, -1, -2, -4, -8, ...
   0,  0,  2,  6, 13, ...
		

Crossrefs

Columns k=0..1 give A000007, A291148.
Rows n=0..1 give A000012, A001489.
Main diagonal gives A291702.
Cf. A291652.

Formula

G.f. of column k: (1 - x/(1 - x^2/(1 - x^3/(1 - x^4/(1 - x^5/(1 - ...))))))^k, a continued fraction.

A098434 Triangle read by rows: coefficients of Genocchi polynomials G(n,x); n times the Euler polynomials.

Original entry on oeis.org

1, 2, -1, 3, -3, 0, 4, -6, 0, 1, 5, -10, 0, 5, 0, 6, -15, 0, 15, 0, -3, 7, -21, 0, 35, 0, -21, 0, 8, -28, 0, 70, 0, -84, 0, 17, 9, -36, 0, 126, 0, -252, 0, 153, 0, 10, -45, 0, 210, 0, -630, 0, 765, 0, -155, 11, -55, 0, 330, 0, -1386, 0, 2805, 0, -1705, 0, 12, -66, 0, 495
Offset: 1

Views

Author

Ralf Stephan, Sep 08 2004

Keywords

Comments

The Genocchi numbers A001489 appear as constant term of every second polynomial and as the negative sum of its coefficients.

Examples

			G(1,x) = 1
G(2,x) = 2*x - 1
G(3,x) = 3*x^2 - 3*x
G(4,x) = 4*x^3 - 6*x^2 + 1
G(5,x) = 5*x^4 - 10*x^3 + 5*x
G(6,x) = 6*x^5 - 15*x^4 + 15*x^2 - 3
G(7,x) = 7*x^6 - 21*x^5 + 35*x^3 - 21*x
		

References

  • Ronald L. Graham, Donald E. Knuth and Oren Patashnik, Concrete Math., 2n-d ed.; Addison-Wesley, 1994, pp. 573-574.

Crossrefs

A001489(n) = G(2n, 0) = -G(2n, 1). Cf. A081733.

Programs

  • Maple
    p := proc(n,x) local j,k; add(binomial(n,k)*add(binomial(k,j)*2^j*bernoulli(j), j=0..k-1)*x^(n-k),k=0..n) end;
    seq(print(sort(p(n,x))),n=1..8); # Peter Luschny, Jul 07 2009
  • Mathematica
    g[n_, x_] := Sum[ k Binomial[n, k] EulerE[k-1, 0] x^(n-k), {k, 1, n}]; Table[ CoefficientList[g[n, x], x] // Reverse, {n, 1, 12}] // Flatten (* Jean-François Alcover, May 23 2013, after Peter Luschny *)
  • PARI
    G(n)=subst(polcoeff(serlaplace(2*x*exp(x*y)/(exp(x)+1)),n),y,x)

Formula

E.g.f.: Sum_{n >= 1} G(n, x)*t^n/n! = 2*t*e^(x*t)/(1 + e^t).
G(n, x) = Sum_{k=1..n} k*C(n, k)* Euler(k-1, 0)*x^(n-k). - Peter Luschny, Jul 13 2009
G(n, x) = n*Euler(n-1,x) = Sum_{k=0..n} binomial(n,k)*Bernoulli(k)*2*(1-2^k)*x^(n-k), with the Euler polynomials Euler(n,x) (see A060096/A060097) and Bernoulli numbers A027641/A027642. See the Graham et al. reference, pp. 573-574, Exercise 7.52. - Wolfdieter Lang, Mar 13 2017
Previous Showing 11-15 of 15 results.