cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-26 of 26 results.

A082038 A square array of quadratic-factorial numbers, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 1, 7, 14, 6, 1, 13, 42, 78, 24, 1, 21, 86, 258, 504, 120, 1, 31, 146, 546, 1752, 3720, 720, 1, 43, 222, 942, 3768, 13320, 30960, 5040, 1, 57, 314, 1446, 6552, 28920, 113040, 287280, 40320, 1, 73, 422, 2058, 10104, 50520, 246960, 1063440
Offset: 0

Views

Author

Paul Barry, Apr 02 2003

Keywords

Comments

Rows include A000142, A001564, A082035, A082036.

Examples

			Rows begin
1 1 2 6 24 ...
1 3 14 78 504 ...
1 7 42 258 1752 ...
1 13 86 546 3768 ...
1 21 146 942 6552 ...
		

Crossrefs

Formula

Square array defined by T(n, k)=((kn)^2+kn+1)n!

A082035 a(n) = (4n^2+2n+1) * n!.

Original entry on oeis.org

1, 7, 42, 258, 1752, 13320, 113040, 1063440, 11007360, 124467840, 1527724800, 20237817600, 287879961600, 4377595622400, 70875950745600, 1217444836608000, 22115388911616000, 423623726862336000, 8534364149735424000
Offset: 0

Views

Author

Paul Barry, Apr 02 2003

Keywords

Comments

A row of the number array A082038.

Crossrefs

Programs

  • Mathematica
    Table[(4n^2+2n+1)n!,{n,0,20}] (* Harvey P. Dale, Jul 15 2011 *)

Formula

a(n) = 4*A002775(n) + A007680(n).

A180193 Triangle read by rows: T(n,k) is the number of permutations of [n] having k blocks of odd length (0<=k<=n).

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 0, 3, 0, 3, 2, 0, 11, 0, 11, 0, 14, 0, 53, 0, 53, 6, 0, 96, 0, 309, 0, 309, 0, 78, 0, 724, 0, 2119, 0, 2119, 24, 0, 852, 0, 6070, 0, 16687, 0, 16687, 0, 504, 0, 9300, 0, 56418, 0, 148329, 0, 148329, 120, 0, 8040, 0, 106170, 0, 577556, 0, 1468457, 0
Offset: 0

Views

Author

Emeric Deutsch, Sep 09 2010

Keywords

Comments

A block of a permutation is a maximal sequence of consecutive integers which appear in consecutive positions. For example, the permutation 5412367 has 4 blocks: 5, 4, 123, and 67.

Examples

			T(3,1)=3 because we have (123), 23(1), and (3)12 (the blocks of odd length are shown between parentheses). T(4,0)=2 because we have 1234 and 3412.
Triangle starts:
  1;
  0,1;
  1,0,1;
  0,3,0,3;
  2,0,11,0,11;
  0,14,0,53,0,53;
		

Crossrefs

Programs

  • Maple
    d[ -1] := 0: d[0] := 1: for n to 50 do d[n] := n*d[n-1]+(-1)^n end do: T := proc (n, k) if `mod`(n+k, 2) = 1 then 0 else sum(binomial(k+j, j)*binomial((1/2)*n+(1/2)*k-1, k+j-1)*(d[k+j]+d[k+j-1]), j = 0 .. (1/2)*n-(1/2)*k) end if end proc; for n from 0 to 10 do seq(T(n, k), k = 0 .. n) end do; # yields sequence in triangular form

Formula

T(n,k) = Sum(binomial(k+j,j)*binomial((n+k+2)/2,k+j-1)*[d(k+j)+d(k+j-1)], j=0..(n-k)/2) if n and k are of the same parity; T(n,k)=0 if n and k have opposite parities (0<=k<=n).
T(n,n) = T(n,n-2) = d(n)+d(n-1) = A000255(n-1), where d(i)=A000166(i) are the derangement numbers.
T(2n+1,1) = A001564(n).
Sum(k*T(n,k),k>=0) = A180195(n).
Sum of entries in row n = n! = A000142(n).

A184178 Irregular triangle read by rows: T(n,k) is the number of permutations of {1,2,...,n} having k isolated fixed points.

Original entry on oeis.org

1, 0, 1, 2, 3, 3, 13, 8, 3, 56, 51, 12, 1, 325, 294, 93, 8, 2193, 2068, 687, 90, 2, 17133, 16392, 5862, 888, 45, 151403, 146484, 54861, 9463, 660, 9, 1492804, 1454716, 565044, 106652, 9320, 264, 16236705, 15903261, 6354090, 1285990, 131145, 5565, 44
Offset: 0

Views

Author

Emeric Deutsch, Feb 13 2011

Keywords

Comments

A fixed point j of a permutation is said to be isolated if neither j-1 nor j+1 is a fixed point. For example, 4135267 has only 3 as an isolated fixed point.
Row n has 1+ceiling(n/2) terms if n >= 4.

Examples

			T(3,1)=3 because we  have 132, 321, and 213.
T(4,2)=3 because we have 1432, 1324, and 3214.
Triangle starts:
    1;
    0,   1;
    2;
    3,   3;
   13,   8,   3;
   56,  51,  12,   1;
  325, 294,  93,   8;
		

Crossrefs

Programs

  • Maple
    d[0] := 1: d[1] := 1: for n to 50 do d[n] := n*d[n-1]+(-1)^n end do: a := proc (n, k) options operator, arrow: add(d[n-j]*add(binomial(j-k-m-1, m-1)*binomial(n+1-j, k+m)*binomial(k+m, k), m = 0 .. floor((1/2)*j-(1/2)*k)), j = k .. n) end proc: 1; 0, 1; 2; 3, 3; for n from 4 to 11 do seq(a(n, k), k = 0 .. ceil((1/2)*n)) end do; # yields sequence in triangular form

Formula

T(n,k) = Sum_{j=k..n} d(n-j)*Sum_{m=0..floor((j-k)/2)} binomial(j-k-m-1, m-1)*binomial(n+1-j, k+m)*binomial(k+m, k), where d(i)=A000166(i) are the derangement numbers.
Sum of entries in row n is n!.
T(n,0) = A184179(n).
Sum_{k>=0} k*T(n,k) = A001564(n-2) (n>=3).

A162968 Number of pairs of consecutive non-fixed points in all permutations of {1,2,...,n}.

Original entry on oeis.org

1, 6, 42, 312, 2520, 22320, 216720, 2298240, 26490240, 330220800, 4430764800, 63707212800, 977642265600, 15953627289600, 275919291648000, 5042392363008000, 97102667870208000, 1965528727658496000, 41724269440229376000, 926935665115299840000
Offset: 2

Views

Author

Emeric Deutsch, Jul 19 2009

Keywords

Examples

			a(3)=6 because in 123, 132, 213, 231, 312, 321 we have 0+1+1+2+2+0 such pairs.
		

Crossrefs

Cf. A001564.

Programs

  • Maple
    seq(factorial(n-1)*(n^2-3*n+3), n = 2 .. 20);
  • Mathematica
    Table[(n-1)!(n^2-3n+3),{n,2,30}] (* Harvey P. Dale, Mar 28 2012 *)

Formula

a(n) = (n-1)! * (n^2 - 3*n + 3) (n>=2).
a(n) = A001564(n-2)*(n-1) for n>=2. - Anton Zakharov, Sep 14 2016
D-finite with recurrence a(n) +(-n-5)*a(n-1) +(4*n-1)*a(n-2) +3*(-n+3)*a(n-3)=0. - R. J. Mathar, Jul 22 2022

A358624 Triangle read by rows. The coefficients of the Hahn polynomials in ascending order of powers. T(n, k) = n! * [x^k] hypergeom([-x, -n, n + 1], [1, 1], 1).

Original entry on oeis.org

1, 1, 2, 2, 6, 6, 6, 22, 30, 20, 24, 100, 170, 140, 70, 120, 548, 1050, 1120, 630, 252, 720, 3528, 7476, 8820, 6720, 2772, 924, 5040, 26136, 59388, 78708, 64680, 37884, 12012, 3432, 40320, 219168, 529896, 748440, 704550, 432432, 204204, 51480, 12870
Offset: 0

Views

Author

Peter Luschny, Nov 26 2022

Keywords

Examples

			[0]     1;
[1]     1,      2;
[2]     2,      6,      6;
[3]     6,     22,     30,     20;
[4]    24,    100,    170,    140,     70;
[5]   120,    548,   1050,   1120,    630,    252;
[6]   720,   3528,   7476,   8820,   6720,   2772,    924;
[7]  5040,  26136,  59388,  78708,  64680,  37884,  12012,  3432;
[8] 40320, 219168, 529896, 748440, 704550, 432432, 204204, 51480, 12870;
		

References

  • A. F. Nikiforov, S. K. Suslov, and V. B. Uvarov, Classical Orthogonal Polynomials of a Discrete Variable, Springer-Verlag Berlin Heidelberg, 1991.

Crossrefs

Cf. A000142, A000984, A001564 (row sums), A133942 (alternating row sums).

Programs

  • Maple
    H := (n, x) -> n!*hypergeom([-x, -n, n + 1], [1, 1], 1):
    for n from 0 to 8 do seq(coeff(simplify(H(n, x)), x, k), k = 0..n) od;

Formula

The general formula for the Hahn polynomials is H(n, x, N, a, b) = (-1)^n*(Pochhammer(N-n, n)*Pochhammer(b+1, n) / n!)*hypergeom([-n, -x, a + b + n + 1], [b + 1, 1 - N], 1). We consider here the case N = a = b = 0.
Previous Showing 21-26 of 26 results.