cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-23 of 23 results.

A106539 a(1)=1, a(2)=1, a(n) = (n-1)*a(n-1) - (n-2)*a(n-2) - ... - a(1) for n>=3.

Original entry on oeis.org

1, 1, 1, 0, -6, -36, -192, -1104, -7248, -54816, -472512, -4573824, -49064448, -577130496, -7381281792, -101940854784, -1511556077568, -23945902043136, -403579232182272, -7209532170092544, -136064164749017088, -2705030337674674176, -56501002847058788352
Offset: 1

Views

Author

Alexandre Wajnberg, May 08 2005

Keywords

Comments

Beginning with a(0)=0, a(1)=1 gives 0, 1, 2, 4, 8, 16, ..., 2^(n-1).

Examples

			a(7) = 6*(-36) - 5(-6) - 4*0 - 3*1 - 2*1 - 1*1 = -216 + 30 - 0 - 3 - 2 - 1 = -192.
		

Crossrefs

Cf. A001571.

Programs

  • Magma
    [n le 2 select 1 else n*Self(n-1) - 2*(n-2)*Self(n-2): n in [1..30]]; // G. C. Greubel, Sep 03 2021
    
  • Maple
    nmax:=24; a[1]:=1: a[2]:=1: for n from 3 to nmax do a[n]:=(n-1)*a[n-1]-add(k*a[k],k=1..n-2) od: seq(a[n],n=1..nmax); # Emeric Deutsch, Feb 03 2006
  • Mathematica
    RecurrenceTable[{a[n]==n*a[n-1] - 2*(n-2)*a[n-2], a[1]==a[2]==1}, a[n], {n,1,20}] (* Georg Fischer, Jun 18 2021 *)
  • Sage
    def a(n): return 1 if (n<3) else n*a(n-1) - 2*(n-2)*a(n-2)
    [a(n) for n in (1..30)] # G. C. Greubel, Sep 03 2021

Formula

D-finite with recurrence: a(n) = n*a(n-1) - 2*(n-2)*a(n-2), a(1)=1, a(2)=1. - Georg Fischer, Jun 18 2021
a(n) = e^(-2)*( - Gamma(n)*E_{n}(-2) + 2^(n-1)*(-Ei(2) + e^2 - Pi*i), where Ei(x) and E_{n}(x) are exponential integrals. - G. C. Greubel, Sep 03 2021

Extensions

More terms from Emeric Deutsch, Feb 03 2006
Definition adapted to offset by Georg Fischer, Jun 18 2021

A175155 Numbers m satisfying m^2 + 1 = x^2 * y^3 for positive integers x and y.

Original entry on oeis.org

0, 682, 1268860318, 1459639851109444, 2360712083917682, 86149711981264908618, 4392100110703410665318, 8171493471761113423918890682, 15203047261220215902863544865414318, 5484296027914919579181500526692857773246, 28285239023397517753374058381589688919682, 12439333951782387734360136352377558500557329868
Offset: 1

Views

Author

Michel Lagneau, Feb 27 2010

Keywords

Comments

This sequence is infinite. The fundamental solution of m^2 + 1 = x^2 y^3 is (m,x,y) = (682,61,5), which means the Pellian equation m^2 - 125x^2 = -1 has the solution (m,x) = (682,61) = (m(1),x(1)). This Pellian equation admits an infinity of solutions (m(2k+1),x(2k+1)), k=1,2,..., given by the following recursive relation, starting with m(1)=682, x(1)= 61: m(2k+1) + x(2k+1)*sqrt(125) = (m(1) + x(1)*sqrt(125))^(2k+1).
Squares of these terms are in A060355, since both a(n)^2 and a(n)^2 + 1 are powerful (A001694). - Charles R Greathouse IV, Nov 16 2012
It appears that y = A077426. - Robert G. Wilson v, Nov 16 2012
Also m^2 + 1 is powerful. Other solutions arise from solutions x to x^2 - k^3*y^2 = -1. - Georgi Guninski, Nov 17 2012
Although it is believed that the b-file is complete for all terms m < 10^100, the search only looked for y < 100000. - Robert G. Wilson v, Nov 17 2012

Examples

			For m=682, m^2 + 1 = 465125 = 61^2 * 5^3.
		

References

  • Albert H. Beiler, "The Pellian" (Chap. 22), Recreations in the Theory of Numbers, 2nd ed. NY: Dover, 1966.
  • A. Cayley, Report of a committee appointed for the purpose of carrying on the tables connected with the Pellian equation ..., Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 13, pp. 430-443.
  • J. M. De Koninck, Ces nombres qui nous fascinent, Ellipses, 2008, p. 108.

Crossrefs

Programs

  • Maple
    C:=array(0..20,0..20):C[1,1]=1: C[2,1]=1: n1:=682:x1:=61:for nn from 1 by 2 to 15 do:s:=0:for i from 2 to 15 do:for j from 1 to i do:C[i,j]:= C[i-1,j] + C[i-1,j-1]: od:od:for n from 1 by 2 to nn+1 do:s:=s + C[nn+1,n] * n1^(nn-n+1)*x1^(n-1)*125^((n-1)/2):od:print (s):od: # Michel Lagneau
    # 2nd program R. J. Mathar, Mar 16 2016:
    # print (nonsorted!) all solutions of A175155 up to search limit
    with(numtheory):
    # upper limit for solutions n
    nsearchlim := 10^40 :
    A175155y := proc(y::integer)
        local disc;
        disc := y^3 ;
        cfrac(sqrt(disc),periodic,quotients) ;
    end proc:
    for y from 2 do
        if issqrfree(y) then
            # find continued fraction for x^2-(y^3=disc)*y^2=-1, sqrt(disc)
            cf := A175155y(y) ;
            nlen :=  nops(op(2,cf)) ;
            if type(nlen,odd) then
                # fundamental solution
                fuso := numtheory[nthconver](cf,nlen-1) ;
                fusolx := numer(fuso) ;
                fusoly := denom(fuso) ;
                solx := fusolx ;
                soly := fusoly ;
                while solx <= nsearchlim do
                    rhhs := solx^2-y^3*soly^2 ;
                    if rhhs = -1 then
                        # print("n=",solx,"x=",soly,"y=",y^3) ;
                        print(solx) ;
                    end if;
                    # solutions from fundamental solution
                    tempx := fusolx*solx+y^3*fusoly*soly ;
                    tempy := fusolx*soly+fusoly*solx ;
                    solx := tempx ;
                    soly := tempy ;
                end do;
            end if;
        fi;
    end do:
  • Mathematica
    nmax = 10^50; ymax = 100; instances = 10; fi[y_] := n /. FindInstance[0 <= n <= nmax && x > 0 && n^2 + 1 == x^2*y^3, {n, x}, Integers, instances]; yy = Select[Range[1, ymax, 2], !IntegerQ[Sqrt[#]] && OddQ[ Length[ ContinuedFraction[Sqrt[#]][[2]]]]&]; Join[{0}, fi /@ yy // Flatten // Union // Most] (* Jean-François Alcover, Jul 12 2017 *)
  • PARI
    is(n)=ispowerful(n^2+1) \\ Charles R Greathouse IV, Nov 16 2012

Formula

m(1)=682, x(1) = 61 and m(2k+1) + x(2k+1)*sqrt(125) = (m(1) + x(1)*sqrt(125))^(2k+1) m(2k+1) = C(2k+1,0) * m(1)^(2k+1) + C(2k+1,2)*m(1)^(2k-1)*x(1)^2 + ...

Extensions

Added condition that x and y must be positive. Added missing initial term 0. Added warning that b-file has not been proved to be correct - there could be missing entries. - N. J. A. Sloane, Nov 17 2012

A341894 For square n > 0, a(n) = 0; for nonsquare n > 0, a(n) is the rank r such that t(r) + t(r-1) = u(r) - u(r-1) - 1, where u(r) and t(r) are indices of some triangular numbers in the Diophantine relation T(u(r)) = n*T(t(r)).

Original entry on oeis.org

0, 1, 1, 0, 2, 2, 2, 2, 0, 3, 2, 2, 4, 2, 2, 0, 2, 2, 3, 2, 4, 4, 2, 2, 0, 3, 2, 4, 4, 2, 4, 2, 2, 2, 2, 0, 2, 2, 2, 4, 4, 2, 4, 2, 4, 6, 2, 2, 0, 3, 3, 4, 4, 2, 4, 2, 4, 4, 2, 2, 8, 2, 2, 0, 2, 4, 4, 2, 4, 4, 4, 2, 6, 2, 2, 6, 4, 4, 2, 2, 0, 3, 2, 2, 8, 4, 2, 4, 4, 2, 6, 4, 4, 4, 2, 4, 4, 2, 2, 0, 2, 2, 4, 2, 4, 8, 2, 2, 8, 2
Offset: 1

Views

Author

Vladimir Pletser, Mar 06 2021

Keywords

Comments

Let t(i) and u(j) be the indices of triangular numbers that satisfy the Diophantine relation T(u(j)) = n*T(t(i)) for some integers i and j. The number of solutions (t(i), u(j)) of T(u(j)) = n*T(t(i)) is 0 or 1 for square n, and an infinity for nonsquare n.
For square n, a(n) is arbitrarily set to 0.
For nonsquare n, a(n) is the index r in the sequence of t(i) and u(j) such that t(r) + t(r-1) = u(r) - u(r-1) - 1.
Alternatively, for nonsquare n, a(n) is the index r such that the ratio t(i)/t(i-r) is decreasing monotonically without jumps for increasing values of i.
Alternatively, for n > 4, a(n) is the index r such that the ratio t(r)/t(r-1) varies between (s+1)/(s-1) and (s+2)/s, with s = [sqrt(n)], where [x] = floor(x).
Alternatively, for nonsquare n, a(n) is the number of fundamental solutions (X_f, Y_f) of the generalized Pell equation X^2 - n*Y^2 = 1 - n providing odd solutions, i.e., with X_f odd and Y_f odd (or Y_f even if y_f is odd, where y_f is the fundamental solution of the associated simple Pell equation x^2 - n*y^2 = 1).

Examples

			The following table gives the first values of nonsquare n and a(n) and the sequences yielding the values of t, u, T(t) and T(u) such that T(u) = n*T(t).
n       2       3       5       6       7       8      10
a(n)    1       1       2       2       2       2       3
t    A053141 A061278 A077259 A077288 A077398 A336623  A341893*
u    A001652 A001571 A077262 A077291 A077401 A336625* A341895*
T(t) A075528 A076139 A077260 A077289 A077399 A336624  A068085*
T(u) A029549 A076140 A077261 A077290 A077400 A336626*   -
With a(n) = r, the definition t(r) + t(r-1) = u(r) - u(r-1) - 1 yields:
- For n = 2, a(n) = 1: A053141(1) + A053141(0) = A001652(1) - A001652(0) - 1, i.e., 2 + 0 = 3 + 0 - 1 = 2.
- For n = 5, a(n) = 2: A077259(2) + A077259(1) = A077262(2) - A077262(1) - 1, i.e., 6 + 2 = 14 - 5 - 1 = 8.
- For n = 10, a(n) = 3: A341893(3+1*) + A341893(2+1*) = A341895(3+1*) - A341895(2+1*) - 1, i.e., 12 + 6 = 39 - 20 - 1 = 18.
Note that for those sequences marked with an *, the first term 0 appears for n = 1, contrary to all the other sequences, where the first term 0 appears for n = 0; the numbering must therefore be adapted and 1 must be added to compensate for this shift in indices.
The monotonic decrease of t(i)/t(i-r) can be seen also as:
- For n = 2, a(n) = 1: for 1 <= i <= 6, A053141(i)/A053141(i-1) decreases monotonically from 7 to 5.829.
- For n = 5, a(n) = 2: for 3 <= i <= 8, A077259(i)/A077259(i-2) decreases monotonically from 22 to 17.948, while A077259(i)/A077259(i-1) takes values alternatively varying between 3 and 2.618 and between 7.333 and 6.855.
- For n = 10, a(n) = 3: for 4 <= i <= 10, A341893(i)/A341893(i-3) decreases monotonically from 55 to 38, while A077259(i) / A077259(i-1) takes values alternatively varying between 6 and 4.44 and between 2 and 1.925.
For n > 4, the relation (s+1)/(s-1) <=  t(r)/t(r-1) <= (s+2)/s, with s = [sqrt(n)], yields:
- For n = 5, a(n) = 2: A077259(2)/A077259(1) = 6/2 = 3, and s = [sqrt(5)] = 2, (s+1)/(s-1) = 3 and (s+2)/s = 2.
- For n = 10, a(n) = 3: A077259(3+1*)/A077259(2+1*) = 12/6 = 2, and s = [sqrt(10)] = 3, (s+1)/(s-1) = 2 and (s+2)/s = 5/3 = 1.667.
Finally, the number of fundamental solutions of the generalized Pell equation is as follows.
- For n = 2, X^2 - 2*Y^2 = -1 has a single fundamental solution, (X_f, Y_f) = (1, 1), and the rank a(n) is 1.
- For n = 5, X^2 - 5*Y^2 = -4 has two fundamental solutions, (X_f, Y_f) = (1, 1) and (-1, 1), and the rank a(n) is 2.
- For n = 10, X^2 - 10*Y^2 = -9 has three fundamental solutions, (X_f, Y_f) = (1, 1), (-1, 1), and (9, 3), and the rank a(n) is 3.
		

References

  • J. S. Chahal and H. D'Souza, "Some remarks on triangular numbers", in A.D. Pollington and W. Mean, eds., Number Theory with an Emphasis on the Markov Spectrum, Lecture Notes in Pure Math, Dekker, New York, 1993, 61-67.

Crossrefs

Previous Showing 21-23 of 23 results.