cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 1287 results. Next

A301815 Decimal expansion of gamma / (2*Pi), where gamma is Euler's constant A001620.

Original entry on oeis.org

0, 9, 1, 8, 6, 6, 7, 2, 6, 2, 9, 9, 1, 5, 3, 9, 9, 0, 3, 7, 9, 6, 4, 2, 2, 3, 4, 0, 7, 1, 8, 7, 8, 0, 9, 1, 4, 1, 3, 6, 2, 9, 2, 8, 0, 5, 6, 0, 6, 4, 1, 2, 1, 2, 3, 6, 1, 0, 8, 7, 2, 0, 8, 3, 7, 4, 5, 6, 2, 8, 1, 9, 3, 4, 9, 6, 1, 8, 0, 7, 0, 6, 2, 9, 2, 3, 4, 6
Offset: 0

Views

Author

Peter Luschny, Apr 13 2018

Keywords

Examples

			Equals 0.0918667262991539903796422340718780914136292805606412123610872...
		

Crossrefs

Programs

  • Magma
    R:=RealField(100); EulerGamma(R)/(2*Pi(R)); // G. C. Greubel, Aug 27 2018
  • Maple
    evalf(gamma(0)/(2*Pi), 100);
  • Mathematica
    RealDigits[EulerGamma/(2*Pi), 10, 100][[1]] (* G. C. Greubel, Aug 11 2018 *)
  • PARI
    Euler/(2*Pi) \\ Altug Alkan, Apr 13 2018
    

Formula

Let beta(r) be the real part of Integral_{-oo..oo} (log(1/2 + i*z)^r / (exp(-Pi*z) + exp(Pi*z))^2) dz, where i denotes the imaginary unit. The constant equals -beta(1) and A301814 equals beta(1/2).

A331777 Numerators of coefficients in asymptotic expansion of exp(2*(H_k-gamma))/k^2 in powers of 1/k, where H_k are the harmonic numbers A001008/A002805 and gamma is the Euler-Mascheroni constant A001620.

Original entry on oeis.org

1, 1, 1, 0, -1, 1, -1, -43, 1831, 949, -137309, -85511, 3404045159, 777985057, -21024051077, -2192231411, 467347169033357, 10187765700589, -11741590582705819219, -3086703970985605357, 169597995722575162268081, 19606186988235984155519, -62715098968866173387571821
Offset: 0

Views

Author

N. J. A. Sloane, Feb 09 2020

Keywords

Crossrefs

Denominators are in A331778.

Programs

  • Mathematica
    Numerator[CoefficientList[Series[Exp[2*(HarmonicNumber[k] - EulerGamma)]/k^2, {k, Infinity, 25}], 1/k]] (* Vaclav Kotesovec, Feb 10 2020 *)

Extensions

Sign of a(7) corrected and more terms from Vaclav Kotesovec, Feb 10 2020

A331778 Denominators of coefficients in asymptotic expansion of exp(2*(H_k-gamma))/k^2 in powers of 1/k, where H_k are the harmonic numbers A001008/A002805 and gamma is the Euler-Mascheroni constant A001620.

Original entry on oeis.org

1, 1, 3, 1, 90, 90, 567, 5670, 340200, 113400, 11226600, 5613300, 91945854000, 18389170800, 137918781000, 13135122000, 562708626480000, 11483849520000, 2020686677689680000, 505171669422420000, 3334133018187972000000, 370459224243108000000, 115027589127485034000000
Offset: 0

Views

Author

N. J. A. Sloane, Feb 09 2020

Keywords

Crossrefs

Numerators are in A331777.

Programs

  • Mathematica
    Denominator[CoefficientList[Series[Exp[2*(HarmonicNumber[k] - EulerGamma)]/k^2, {k, Infinity, 25}], 1/k]] (* Vaclav Kotesovec, Feb 10 2020 *)

Extensions

More terms from Vaclav Kotesovec, Feb 10 2020

A363538 Decimal expansion of Sum_{k>=1} (H(k) - log(k) - gamma)/k, where H(k) = A001008(k)/A002805(k) is the k-th harmonic number and gamma is Euler's constant (A001620).

Original entry on oeis.org

7, 2, 8, 6, 9, 3, 9, 1, 7, 0, 0, 3, 9, 3, 0, 6, 0, 5, 9, 3, 7, 6, 0, 5, 8, 9, 1, 0, 2, 0, 2, 9, 1, 8, 0, 0, 4, 1, 7, 5, 0, 2, 7, 1, 8, 8, 1, 2, 9, 2, 2, 2, 9, 9, 8, 9, 1, 3, 6, 9, 0, 0, 5, 4, 2, 5, 2, 7, 2, 2, 7, 1, 9, 2, 5, 2, 3, 3, 5, 8, 6, 9, 6, 4, 2, 6, 9, 7, 4, 4, 2, 3, 8, 8, 6, 5, 3, 7, 8, 6, 0, 4, 5, 5, 9
Offset: 0

Views

Author

Amiram Eldar, Jun 09 2023

Keywords

Examples

			0.72869391700393060593760589102029180041750271881292...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[-StieltjesGamma[1] - EulerGamma^2/2 + Pi^2/12, 10, 120][[1]]

Formula

Equals -gamma_1 - gamma^2/2 + Pi^2/12, where gamma_1 is the 1st Stieltjes constant (A082633).

A363539 Decimal expansion of Sum_{k>=1} (H(k)^2 - (log(k) + gamma)^2)/k, where H(k) = A001008(k)/A002805(k) is the k-th harmonic number and gamma is Euler's constant (A001620).

Original entry on oeis.org

1, 9, 6, 8, 9, 6, 9, 0, 8, 3, 9, 1, 0, 5, 2, 8, 5, 4, 6, 4, 6, 4, 8, 9, 1, 4, 5, 3, 7, 9, 6, 6, 8, 0, 5, 4, 2, 3, 1, 1, 3, 7, 7, 9, 4, 2, 8, 6, 8, 1, 9, 8, 1, 3, 4, 4, 5, 5, 1, 4, 3, 1, 5, 3, 4, 0, 2, 2, 5, 2, 1, 9, 8, 2, 6, 8, 9, 2, 3, 3, 4, 1, 1, 8, 6, 4, 4, 9, 1, 8, 3, 7, 4, 5, 7, 6, 7, 4, 4, 0, 9, 8, 7, 8, 3
Offset: 1

Views

Author

Amiram Eldar, Jun 09 2023

Keywords

Comments

The formula for this sum was found by Olivier Oloa and proved by Roberto Tauraso in 2014.

Examples

			1.96896908391052854646489145379668054231137794286819...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[-StieltjesGamma[2] - 2*EulerGamma*StieltjesGamma[1] - 2*EulerGamma^3/3 + 5*Zeta[3]/3, 10, 120][[1]]

Formula

Equals -gamma_2 - 2*gamma*gamma_1 - (2/3)*gamma^3 + (5/3)*zeta(3), where gamma_1 and gamma_2 are the 1st and 2nd Stieltjes constants (A082633, A086279).

A363540 Decimal expansion of Sum_{k>=1} (H(k)^3 - (log(k) + gamma)^3)/k, where H(k) = A001008(k)/A002805(k) is the k-th harmonic number and gamma is Euler's constant (A001620).

Original entry on oeis.org

5, 8, 2, 1, 7, 4, 0, 0, 8, 5, 0, 4, 8, 6, 4, 6, 5, 2, 8, 8, 9, 6, 8, 6, 8, 6, 1, 5, 5, 0, 2, 0, 4, 1, 3, 4, 3, 1, 5, 0, 3, 3, 3, 2, 4, 3, 1, 9, 5, 7, 7, 0, 1, 1, 4, 4, 2, 4, 0, 3, 9, 2, 7, 6, 4, 7, 6, 4, 1, 3, 9, 7, 2, 2, 5, 9, 8, 1, 8, 9, 7, 4, 9, 5, 1, 8, 9, 0, 4, 2, 8, 5, 7, 4, 3, 2, 3, 1, 9, 0, 9, 6, 5, 9, 7
Offset: 1

Views

Author

Amiram Eldar, Jun 09 2023

Keywords

Examples

			5.82174008504864652889686861550204134315033324319577...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[-StieltjesGamma[3] - 3*EulerGamma*StieltjesGamma[2] - 3*EulerGamma^2*StieltjesGamma[1] - 3*EulerGamma^4/4 + 43*Zeta[4]/8, 10, 120][[1]]

Formula

Equals -gamma_3 - 3*gamma*gamma_2 - 3*gamma^2*gamma_1 - (3/4)*gamma^4 + (43/8)*zeta(4), where gamma_1, gamma_2 and gamma_3 are the 1st, 2nd and 3rd Stieltjes constants (A082633, A086279, A086280).

A059190 Engel expansion of gamma^2, (gamma is the Euler-Mascheroni constant A001620) = 0.333178.

Original entry on oeis.org

4, 4, 4, 4, 4, 6, 23, 26, 126, 132, 154, 269, 421, 911, 1899, 7335, 14245, 34244, 78354, 173699, 239896, 247397, 659900, 1646344, 2454988, 6831657, 65833355, 839918922, 1187969748, 3583279448, 4114383765, 6590212761, 11304687651
Offset: 1

Views

Author

Keywords

Comments

Cf. A006784 for definition of Engel expansion.

References

  • F. Engel, Entwicklung der Zahlen nach Stammbruechen, Verhandlungen der 52. Versammlung deutscher Philologen und Schulmaenner in Marburg, 1913, pp. 190-191.

Crossrefs

Cf. A155969.

Programs

  • Mathematica
    EngelExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@
    NestList[{Ceiling[1/Expand[#[[1]] #[[2]] - 1]], Expand[#[[1]] #[[2]] - 1]/1} &, {Ceiling[1/(A - Floor[A])], (A - Floor[A])/1}, n - 1]];
    EngelExp[N[EulerGamma^2, 7!], 100] (* Modified by G. C. Greubel, Dec 27 2016 *)

A059191 Engel expansion of 1/gamma, (gamma is the Euler-Mascheroni constant A001620) = 1.73245.

Original entry on oeis.org

1, 2, 3, 3, 6, 10, 20, 46, 226, 1836, 3719, 14308, 17262, 129530, 945152, 1535786, 2229882, 3560447, 9434930, 20957352, 102311436, 312567415, 449243761, 4362956254, 12000988888, 22909186976, 29969826721
Offset: 1

Views

Author

Keywords

Comments

Cf. A006784 for definition of Engel expansion.

References

  • F. Engel, Entwicklung der Zahlen nach Stammbruechen, Verhandlungen der 52. Versammlung deutscher Philologen und Schulmaenner in Marburg, 1913, pp. 190-191.

Crossrefs

Cf. A098907.

Programs

  • Mathematica
    EngelExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@
    NestList[{Ceiling[1/Expand[#[[1]] #[[2]] - 1]], Expand[#[[1]] #[[2]] - 1]/1} &, {Ceiling[1/(A - Floor[A])], (A - Floor[A])/1}, n - 1]];
    EngelExp[N[EulerGamma^2, 7!], 100] (* Modified by G. C. Greubel, Dec 27 2016 *)

A059192 Engel expansion of log(1/gamma) (where gamma is the Euler-Mascheroni constant A001620) = 0.549539...

Original entry on oeis.org

2, 11, 12, 13, 53, 348, 5263, 9960, 17040, 33193, 72960, 125350, 663179, 1096815, 3481893, 4802237, 7782503, 9659740, 279957736, 454935116, 460488754, 1710020367, 51367039980, 55286622194, 323648965384, 2061149370731
Offset: 1

Views

Author

Keywords

Comments

Cf. A006784 for definition of Engel expansion.

References

  • F. Engel, Entwicklung der Zahlen nach Stammbruechen, Verhandlungen der 52. Versammlung deutscher Philologen und Schulmaenner in Marburg, 1913, pp. 190-191.

Crossrefs

Cf. A002389.

Programs

  • Mathematica
    EngelExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@
    NestList[{Ceiling[1/Expand[#[[1]] #[[2]] - 1]], Expand[#[[1]] #[[2]] - 1]/1} &, {Ceiling[1/(A - Floor[A])], (A - Floor[A])/1}, n - 1]];
    EngelExp[N[Log[1/EulerGamma], 7!], 100] (* Modified by G. C. Greubel, Dec 27 2016 *)

A059199 Engel expansion of e^gamma (gamma is the Euler-Mascheroni constant A001620) = 1.78107.

Original entry on oeis.org

1, 2, 2, 9, 9, 15, 84, 256, 278, 819, 1734, 6500, 10004, 20116, 26612, 31762827, 181599789, 981641086, 1698644383, 1987894743, 5557385559, 11998593788, 12646182115, 70932754473, 106473857370, 527311590750
Offset: 1

Views

Author

Keywords

Comments

Cf. A006784 for definition of Engel expansion

References

  • F. Engel, Entwicklung der Zahlen nach Stammbruechen, Verhandlungen der 52. Versammlung deutscher Philologen und Schulmaenner in Marburg, 1913, pp. 190-191.

Crossrefs

Cf. A073004.

Programs

  • Mathematica
    EngelExp[A_, n_] := Join[Array[1 &, Floor[A]], First@Transpose@
    NestList[{Ceiling[1/Expand[#[[1]] #[[2]] - 1]], Expand[#[[1]] #[[2]] - 1]/1} &, {Ceiling[1/(A - Floor[A])], (A - Floor[A])/1}, n - 1]];
    EngelExp[N[E^EulerGamma, 7!], 100] (* Modified by G. C. Greubel, Dec 28 2016 *)
Previous Showing 41-50 of 1287 results. Next