A153296
G.f.: A(x) = F(x*G(x)^3) = F(G(x)-1) where F(x) = G(x/F(x)) = 1 + x*F(x)^2 is the g.f. of A000108 (Catalan) and G(x) = F(x*G(x)) = 1 + x*G(x)^3 is the g.f. of A001764.
Original entry on oeis.org
1, 1, 5, 29, 180, 1162, 7698, 51950, 355531, 2460224, 17178755, 120861710, 855828960, 6094211829, 43610311298, 313449094851, 2261820356684, 16379528485200, 119003715014955, 867198605427231, 6336861345197670
Offset: 0
G.f.: A(x) = F(x*G(x)^2) = 1 + x + 5*x^2 + 29*x^3 + 180*x^4 +... where
F(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 +...
F(x)^2 = 1 + 2*x + 5*x^2 + 14*x^3 + 42*x^4 + 132*x^5 + 429*x^6 +...
G(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + 1428*x^6 +...
G(x)^2 = 1 + 2*x + 7*x^2 + 30*x^3 + 143*x^4 + 728*x^5 + 3876*x^6 +...
G(x)^3 = 1 + 3*x + 12*x^2 + 55*x^3 + 273*x^4 + 1428*x^5 +...
A(x)^2 = 1 + 2*x + 11*x^2 + 68*x^3 + 443*x^4 + 2974*x^5 +...
G(x)^3*A(x)^2 = 1 + 5*x + 29*x^2 + 180*x^3 + 1162*x^4 +...
-
{a(n)=if(n==0,1,sum(k=0,n,binomial(2*k+1,k)/(2*k+1)*binomial(3*(n-k)+3*k,n-k)*3*k/(3*(n-k)+3*k)))}
A153297
G.f.: A(x) = F(x*G(x)^2)^2 where F(x) = G(x/F(x)) = 1 + x*F(x)^2 is the g.f. of A000108 (Catalan) and G(x) = F(x*G(x)) = 1 + x*G(x)^3 is the g.f. of A001764.
Original entry on oeis.org
1, 2, 9, 48, 276, 1656, 10212, 64190, 409218, 2637282, 17143506, 112224228, 738926064, 4889332266, 32488240779, 216664589058, 1449568426292, 9725637277248, 65417353098837, 441013558347228, 2979206654245122
Offset: 0
G.f.: A(x) = F(x*G(x)^2)^2 = 1 + 2*x + 9*x^2 + 48*x^3 + 276*x^4 +... where
F(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 +...
F(x)^2 = 1 + 2*x + 5*x^2 + 14*x^3 + 42*x^4 + 132*x^5 + 429*x^6 +...
G(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + 1428*x^6 +...
G(x)^2 = 1 + 2*x + 7*x^2 + 30*x^3 + 143*x^4 + 728*x^5 + 3876*x^6 +...
G(x)^3 = 1 + 3*x + 12*x^2 + 55*x^3 + 273*x^4 + 1428*x^5 + 7752*x^6 +...
-
{a(n)=if(n==0,1,sum(k=0,n,binomial(2*k+2,k)*2/(2*k+2)*binomial(3*(n-k)+2*k,n-k)*2*k/(3*(n-k)+2*k)))}
A153298
G.f.: A(x) = F(x*G(x)^3)^2 = F(G(x)-1)^2 where F(x) = G(x/F(x)) = 1 + x*F(x)^2 is the g.f. of A000108 (Catalan) and G(x) = F(x*G(x)) = 1 + x*G(x)^3 is the g.f. of A001764.
Original entry on oeis.org
1, 2, 11, 68, 443, 2974, 20361, 141356, 991738, 7015814, 49967892, 357896120, 2575844046, 18616823352, 135051785186, 982949932092, 7175591019313, 52524480778590, 385429134781530, 2834791998208500, 20893844524709649
Offset: 0
G.f.: A(x) = F(x*G(x)^3)^2 = 1 + 2*x + 11*x^2 + 68*x^3 + 443*x^4 +... where
F(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 +...
F(x)^2 = 1 + 2*x + 5*x^2 + 14*x^3 + 42*x^4 + 132*x^5 + 429*x^6 +...
G(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + 1428*x^6 +...
G(x)^2 = 1 + 2*x + 7*x^2 + 30*x^3 + 143*x^4 + 728*x^5 + 3876*x^6 +...
G(x)^3 = 1 + 3*x + 12*x^2 + 55*x^3 + 273*x^4 + 1428*x^5 + 7752*x^6 +...
-
{a(n)=if(n==0,1,sum(k=0,n,binomial(2*k+2,k)*2/(2*k+2)*binomial(3*(n-k)+3*k,n-k)*3*k/(3*(n-k)+3*k)))}
A153390
G.f.: A(x) = F(x*G(x))^2 where F(x) = G(x*F(x)) = 1 + x*F(x)^3 is the g.f. of A001764 and G(x) = F(x/G(x)) = 1 + x*G(x)^2 is the g.f. of A000108 (Catalan).
Original entry on oeis.org
1, 2, 9, 48, 278, 1696, 10736, 69886, 465019, 3149476, 21643433, 150554144, 1058101315, 7502183626, 53599160532, 385494328218, 2788827078507, 20280590381098, 148167425970522, 1087007419753186, 8004683588800899
Offset: 0
G.f.: A(x) = F(x*G(x))^2 = 1 + 2*x + 9*x^2 + 48*x^3 + 278*x^4 +... where
F(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + 1428*x^6 +...
F(x)^2 = 1 + 2*x + 7*x^2 + 30*x^3 + 143*x^4 + 728*x^5 + 3876*x^6 +...
F(x)^3 = 1 + 3*x + 12*x^2 + 55*x^3 + 273*x^4 + 1428*x^5 + 7752*x^6 +...
G(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 +...
G(x)^2 = 1 + 2*x + 5*x^2 + 14*x^3 + 42*x^4 + 132*x^5 + 429*x^6 +...
-
{a(n)=if(n==0,1,sum(k=0,n,binomial(3*k+2,k)*2/(3*k+2)*binomial(2*(n-k)+k,n-k)*k/(2*(n-k)+k)))}
A153391
G.f.: A(x) = F(x*G(x)^2) where F(x) = G(x*F(x)) = 1 + x*F(x)^3 is the g.f. of A001764 and G(x) = F(x/G(x)) = 1 + x*G(x)^2 is the g.f. of A000108 (Catalan).
Original entry on oeis.org
1, 1, 5, 29, 183, 1223, 8525, 61366, 453003, 3412077, 26124599, 202748728, 1591450129, 12612760009, 100790253764, 811227147197, 6570431009209, 53512143110041, 437976298197769, 3600504527707557, 29716593448484673
Offset: 0
G.f.: A(x) = F(x*G(x)^2) = 1 + x + 5*x^2 + 29*x^3 + 183*x^4 +... where
F(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + 1428*x^6 +...
F(x)^3 = 1 + 3*x + 12*x^2 + 55*x^3 + 273*x^4 + 1428*x^5 +...
G(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 +...
G(x)^2 = 1 + 2*x + 5*x^2 + 14*x^3 + 42*x^4 + 132*x^5 +...
A(x)^2 = 1 + 2*x + 11*x^2 + 68*x^3 + 449*x^4 + 3102*x^5 +...
A(x)^3 = 1 + 3*x + 18*x^2 + 118*x^3 + 813*x^4 + 5799*x^5 +...
G(x)^2*A(x)^3 = 1 + 5*x + 29*x^2 + 183*x^3 + 1223*x^4 + 8525*x^5 +...
-
{a(n)=if(n==0,1,sum(k=0,n,binomial(3*k+1,k)/(3*k+1)*binomial(2*(n-k)+2*k,n-k)*2*k/(2*(n-k)+2*k)))}
A153392
G.f.: A(x) = F(x*G(x)^3) where F(x) = G(x*F(x)) = 1 + x*F(x)^3 is the g.f. of A001764 and G(x) = F(x/G(x)) = 1 + x*G(x)^2 is the g.f. of A000108 (Catalan).
Original entry on oeis.org
1, 1, 6, 39, 272, 2001, 15333, 121266, 983274, 8133564, 68382628, 582700485, 5021538753, 43690059657, 383263396836, 3386175566418, 30104702903914, 269125162789764, 2417709649413102, 21815252320257250, 197620659225838530
Offset: 0
G.f.: A(x) = F(x*G(x)^3) = 1 + x + 6*x^2 + 39*x^3 + 272*x^4+... where
F(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + 1428*x^6 +...
F(x)^3 = 1 + 3*x + 12*x^2 + 55*x^3 + 273*x^4 + 1428*x^5 +...
G(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 +...
G(x)^2 = 1 + 2*x + 5*x^2 + 14*x^3 + 42*x^4 + 132*x^5 + 429*x^6 +...
G(x)^3 = 1 + 3*x + 9*x^2 + 28*x^3 + 90*x^4 + 297*x^5 + 1001*x^6 +...
A(x)^2 = 1 + 2*x + 13*x^2 + 90*x^3 + 658*x^4 + 5014*x^5 +...
A(x)^3 = 1 + 3*x + 21*x^2 + 154*x^3 + 1176*x^4 + 9264*x^5 +...
G(x)^3*A(x)^3 = 1 + 6*x + 39*x^2 + 272*x^3 + 2001*x^4 + 15333*x^5 +...
-
{a(n)=if(n==0,1,sum(k=0,n,binomial(3*k+1,k)/(3*k+1)*binomial(2*(n-k)+3*k,n-k)*3*k/(2*(n-k)+3*k)))}
A153393
G.f.: A(x) = F(x*G(x)^2)^2 where F(x) = G(x*F(x)) = 1 + x*F(x)^3 is the g.f. of A001764 and G(x) = F(x/G(x)) = 1 + x*G(x)^2 is the g.f. of A000108 (Catalan).
Original entry on oeis.org
1, 2, 11, 68, 449, 3102, 22167, 162626, 1218411, 9285888, 71778489, 561453704, 4436120129, 35354290118, 283876985742, 2294347190142, 18650560232199, 152386763938940, 1250801705584643, 10308949444236522, 85281112255921359
Offset: 0
G.f.: A(x) = F(x*G(x)^2)^2 = 1 + 2*x + 11*x^2 + 68*x^3 + 449*x^4 +... where
F(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + 1428*x^6 +...
F(x)^2 = 1 + 2*x + 7*x^2 + 30*x^3 + 143*x^4 + 728*x^5 + 3876*x^6 +...
F(x)^3 = 1 + 3*x + 12*x^2 + 55*x^3 + 273*x^4 + 1428*x^5 +...
G(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 +...
G(x)^2 = 1 + 2*x + 5*x^2 + 14*x^3 + 42*x^4 + 132*x^5 + 429*x^6 +...
-
{a(n)=if(n==0,1,sum(k=0,n,binomial(3*k+2,k)*2/(3*k+2)*binomial(2*(n-k)+2*k,n-k)*2*k/(2*(n-k)+2*k)))}
A153394
G.f.: A(x) = F(x*G(x)^2)^3 where F(x) = G(x*F(x)) = 1 + x*F(x)^3 is the g.f. of A001764 and G(x) = F(x/G(x)) = 1 + x*G(x)^2 is the g.f. of A000108 (Catalan).
Original entry on oeis.org
1, 3, 18, 118, 813, 5799, 42470, 317637, 2416671, 18649874, 145655292, 1149199212, 9146686605, 73354982763, 592217363334, 4809250320023, 39258457746069, 321964620209940, 2651536017682988, 21919266484180533, 181820251665093357
Offset: 0
G.f.: A(x) = F(x*G(x)^2)^3 = 1 + 3*x + 18*x^2 + 118*x^3 + 813*x^4 +... where
F(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + 1428*x^6 +...
F(x)^2 = 1 + 2*x + 7*x^2 + 30*x^3 + 143*x^4 + 728*x^5 + 3876*x^6 +...
F(x)^3 = 1 + 3*x + 12*x^2 + 55*x^3 + 273*x^4 + 1428*x^5 +...
G(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 +...
G(x)^2 = 1 + 2*x + 5*x^2 + 14*x^3 + 42*x^4 + 132*x^5 + 429*x^6 +...
-
{a(n)=if(n==0,1,sum(k=0,n,binomial(3*k+3,k)/(k+1)*binomial(2*n,n-k)*k/n))}
A153398
G.f.: A(x) = F(x*G(x)^2) where F(x) = G(x/F(x)) = 1 + x*F(x)^3 is the g.f. of A001764 and G(x) = F(x*G(x)) = 1 + x*G(x)^4 is the g.f. of A002293.
Original entry on oeis.org
1, 1, 5, 33, 245, 1941, 16023, 136075, 1179833, 10392981, 92701411, 835271032, 7589337123, 69444928453, 639280878401, 5915683250220, 54991636090761, 513257729193329, 4807619948647095, 45177320023095160, 425766248463523359
Offset: 0
G.f.: A(x) = F(x*G(x)^2) = 1 + x + 5*x^2 + 33*x^3 + 245*x^4 +... where
F(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + 1428*x^6 +...
F(x)^2 = 1 + 2*x + 7*x^2 + 30*x^3 + 143*x^4 + 728*x^5 + 3876*x^6 +...
F(x)^3 = 1 + 3*x + 12*x^2 + 55*x^3 + 273*x^4 + 1428*x^5 + 7752*x^6 +...
G(x) = 1 + x + 4*x^2 + 22*x^3 + 140*x^4 + 969*x^5 + 7084*x^6 +...
G(x)^2 = 1 + 2*x + 9*x^2 + 52*x^3 + 340*x^4 + 2394*x^5 +...
G(x)^3 = 1 + 3*x + 15*x^2 + 91*x^3 + 612*x^4 + 4389*x^5 +...
G(x)^4 = 1 + 4*x + 22*x^2 + 140*x^3 + 969*x^4 + 7084*x^5 +...
A(x)^2 = 1 + 2*x + 11*x^2 + 76*x^3 + 581*x^4 + 4702*x^5 +...
A(x)^3 = 1 + 3*x + 18*x^2 + 130*x^3 + 1023*x^4 + 8457*x^5 +...
G(x)^2*A(x)^3 = 1 + 5*x + 33*x^2 + 245*x^3 + 1941*x^4 + 16023*x^5 +...
-
{a(n)=if(n==0,1,sum(k=0,n,binomial(3*k+1,k)/(3*k+1)*binomial(4*(n-k)+2*k,n-k)*2*k/(4*(n-k)+2*k)))}
A357793
a(n) = coefficient of x^n in A(x) = Sum_{n>=0} x^n*F(x)^n * (1 - x^n*F(x)^n)^n, where F(x) = 1 + x*F(x)^3 is a g.f. of A001764.
Original entry on oeis.org
1, 1, 1, 4, 14, 64, 314, 1633, 8826, 49107, 279349, 1617290, 9498099, 56445918, 338817460, 2051182532, 12509647159, 76785827812, 474000090118, 2940761033970, 18327028477625, 114677403429121, 720191795608082, 4537925593859911, 28679991910774479, 181761824439041725
Offset: 0
G.f.: A(x) = 1 + x + x^2 + 4*x^3 + 14*x^4 + 64*x^5 + 314*x^6 + 1633*x^7 + 8826*x^8 + 49107*x^9 + 279349*x^10 + 1617290*x^11 + 9498099*x^12 + ...
where
F(x) = 1 + x*F(x)*(1 - x*F(x)) + x^2*F(x)^2*(1 - x^2*F(x)^2) + x^3*F(x)^3*(1 - x^3*F(x)^3) + x^4*F(x)^4*(1 - x^4*F(x)^4) + ... + x^n * F(x)^n * (1 - x^n*F(x)^n)^n + ...
also,
F(x) = 1/(1 - x*F(x)) - (x*F(x))^2/(1 - x^2*F(x)^2)^2 + (x*F(x))^6/(1 - x^3*F(x)^3)^3 - (x*F(x))^12/(1 - x^4*F(x)^4)^4 + (x*F(x))^20/(1 - x^5*F(x)^4)^5 +- ... + (-1)^(n-1) * (x*F(x))^(n*(n-1)) / (1 - x^n*F(x)^n)^n + ...
Where F(x) = 1 + x*F(x)^3 begins
F(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + 1428*x^6 + 7752*x^7 + 43263*x^8 + 246675*x^9 + 1430715*x^10 + ... + A001764(n)*x^n + ...
SPECIFIC VALUES.
The radius of convergence of the power series A(x) equals 4/27.
The power series A(x) converges at x = 4/27 to
A(4/27) = 1.2311920996301390036800654138630946234233891541082821783156...
which equals the following sums:
(1) A(4/27) = Sum_{n>=0} 2^n * (9^n - 2^n)^n / 9^(n*(n+1)),
(2) A(4/27) = Sum_{n>=1} (-1)^(n-1) * 2^(n*(n-1)) * 9^n / (9^n - 2^n)^n.
-
{a(n) = my(A=1, F = (serreverse(x/(1+x + O(x^(n+2)))^3)/x)^(1/3));
A = sum(m=0,n, x^m * F^m * (1 - x^m*F^m)^m); polcoeff(A,n)}
for(n=0,30, print1(a(n),", "))
-
{a(n) = my(A=1, F = (serreverse(x/(1+x + O(x^(n+3)))^3)/x)^(1/3));
A = sum(m=1,n+1, (-1)^(m-1) * (x*F)^(m*(m-1)) / (1 - x^m*F^m)^m); polcoeff(A,n)}
for(n=0,30, print1(a(n),", "))
Comments