A386514
Expansion of e.g.f. exp(x^2/(1-x)^3).
Original entry on oeis.org
1, 0, 2, 18, 156, 1560, 18480, 254520, 3973200, 68947200, 1312748640, 27175024800, 607314818880, 14566195163520, 373027570755840, 10154293067318400, 292659790712889600, 8899747730037964800, 284685195814757337600, 9553060139009702515200, 335468448755976164428800
Offset: 0
a(6)=18480 since there are 10800 ways using one line, 4320 ways with 2 lines using 2 and 4 objects, 3240 ways with 2 lines of 3 objects each, and 120 ways with 3 lines of 2 objects each.
-
nmax = 20; CoefficientList[Series[E^(x^2/(1-x)^3), {x, 0, nmax}], x] * Range[0, nmax]! (* or *)
nmax = 20; Join[{1}, Table[n!*Sum[Binomial[n + k - 1, 3*k - 1]/k!, {k, 1, n}], {n, 1, nmax}]] (* Vaclav Kotesovec, Aug 24 2025 *)
A253284
Triangle read by rows, T(n,k) = (k+1)*(n+1)!*(n+k)!/((k+1)!^2*(n-k)!) with n >= 0 and 0 <= k <= n.
Original entry on oeis.org
1, 2, 2, 6, 18, 12, 24, 144, 240, 120, 120, 1200, 3600, 4200, 1680, 720, 10800, 50400, 100800, 90720, 30240, 5040, 105840, 705600, 2116800, 3175200, 2328480, 665280, 40320, 1128960, 10160640, 42336000, 93139200, 111767040, 69189120, 17297280
Offset: 0
Triangle begins:
1;
2, 2;
6, 18, 12;
24, 144, 240, 120;
120, 1200, 3600, 4200, 1680;
720, 10800, 50400, 100800, 90720, 30240;
5040, 105840, 705600, 2116800, 3175200, 2328480, 665280.
-
/* As triangle: */ [[(k + 1)*Factorial(n + 1)*Factorial(n + k)/(Factorial(k + 1)^2*Factorial(n - k)): k in [0..n]]: n in [0..10]]; // Bruno Berselli, Mar 23 2015
-
T := (n,k) -> ((k+1)*(n+1)!*(n+k)!)/((k+1)!^2*(n-k)!);
for n from 0 to 6 do seq(T(n,k), k=0..n) od;
-
f[n_] := Rest@ Flatten@ Reap@ Block[{i, k, t}, For[i = 0, i <= n, i++, For[k = 0, k <= i, k++, Sow[(i + 1)!*Binomial[i + k, i]*Binomial[i, k]/(k + 1)]]]]; f@ 7 (* Michael De Vlieger, Mar 23 2015 *)
-
tabl(nn) = {for (n=0, nn, for (k=0, n, print1((n+1)!*binomial(n+k,n)*binomial(n,k)/(k+1), ", ");); print(););} \\ Michel Marcus, Mar 23 2015
A364524
Expansion of e.g.f. (1-x)^3/(1-3x+2x^2-x^3).
Original entry on oeis.org
1, 0, 2, 18, 168, 1920, 26640, 433440, 8064000, 168739200, 3922732800, 100310918400, 2798327347200, 84569169484800, 2752393009766400, 95978067913728000, 3569951024640000000, 141085196791418880000, 5903699220162551808000, 260764276201191899136000, 12124067910801279713280000
Offset: 0
a(6)=26640 since the number of ways to seat 6 persons on benches, linear order the benches, and select 2 persons from each bench is the following:
1) benches of type 1234,56: 1440 of these, 8640 ways;
2) benches of type 123,456: 720 of these, 6480 ways;
3) benches of type 12,34,56: 720 of these, 720 ways;
4) benches of type 123456: 720 of these, 10800 ways.
-
With[{max = 20}, Range[0, max]! * CoefficientList[Series[(1 - x)^3/(1 - 3*x + 2*x^2 - x^3), {x, 0, max}], x]] (* Amiram Eldar, Jul 28 2023 *)
A387264
Expansion of e.g.f. exp(x^3/(1-x)^4).
Original entry on oeis.org
1, 0, 0, 6, 96, 1200, 14760, 196560, 2983680, 52315200, 1041465600, 22912243200, 545443113600, 13887294220800, 376188856243200, 10816657377926400, 329526966472704000, 10612556870243328000, 360307460991724646400, 12857257599818926694400, 480829913352068087808000
Offset: 0
a(6)=14760 since there are 14400 ways using one bench and 360 ways with 2 benches of 3 people each.
-
nmax = 20; Join[{1}, Table[n!*Sum[Binomial[n + k - 1, 4*k - 1]/k!, {k, 1, n}], {n, 1, nmax}]] (* Vaclav Kotesovec, Aug 25 2025 *)
Comments