cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 340 results. Next

A254229 Indices of centered square numbers (A001844) which are also heptagonal numbers (A000566).

Original entry on oeis.org

1, 46, 207, 14652, 66493, 4717738, 21410379, 1519096824, 6894075385, 489144459430, 2219870863431, 157502996839476, 714791523949237, 50715475837851682, 230160650840790723, 16330225716791401968, 74111014779210663409, 5258281965330993581854
Offset: 1

Views

Author

Colin Barker, Jan 27 2015

Keywords

Comments

Also positive integers y in the solutions to 5*x^2 - 4*y^2 - 3*x + 4*y - 2 = 0, the corresponding values of x being A254228.

Examples

			46 is in the sequence because the 46th centered square number is 4141, which is also the 41st heptagonal number.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,322,-322,-1,1},{1,46,207,14652,66493},20] (* Harvey P. Dale, Sep 19 2022 *)
  • PARI
    Vec(x*(45*x^3+161*x^2-45*x-1)/((x-1)*(x^2-18*x+1)*(x^2+18*x+1)) + O(x^100))

Formula

a(n) = a(n-1)+322*a(n-2)-322*a(n-3)-a(n-4)+a(n-5).
G.f.: x*(45*x^3+161*x^2-45*x-1) / ((x-1)*(x^2-18*x+1)*(x^2+18*x+1)).

A254230 Heptagonal numbers (A000566) which are also centered square numbers (A001844).

Original entry on oeis.org

1, 4141, 85285, 429332905, 8842505113, 44514094237813, 916808615026525, 4615310318335580305, 95056550814337645681, 478524604381155542930941, 9855653300615347164456661, 49614388026831658683830230201, 1021853845419343873890857865865
Offset: 1

Views

Author

Colin Barker, Jan 27 2015

Keywords

Examples

			4141 is in the sequence because it is the 41st heptagonal number and the 46th centered square number.
		

Crossrefs

Programs

  • PARI
    Vec(-x*(x^4+4140*x^3-22538*x^2+4140*x+1)/((x-1)*(x^2-322*x+1)*(x^2+322*x+1)) + O(x^100))

Formula

a(n) = a(n-1)+103682*a(n-2)-103682*a(n-3)-a(n-4)+a(n-5).
G.f.: -x*(x^4+4140*x^3-22538*x^2+4140*x+1) / ((x-1)*(x^2-322*x+1)*(x^2+322*x+1)).

A254709 Indices of pentagonal numbers (A000326) which are also centered square numbers (A001844).

Original entry on oeis.org

1, 2, 10, 25, 137, 346, 1906, 4817, 26545, 67090, 369722, 934441, 5149561, 13015082, 71724130, 181276705, 998988257, 2524858786, 13914111466, 35166746297, 193798572265, 489809589370, 2699265900242, 6822167504881, 37595924031121, 95020535478962
Offset: 1

Views

Author

Colin Barker, Feb 06 2015

Keywords

Comments

Also positive integers x in the solutions to 3*x^2 - 4*y^2 - x + 4*y - 2 = 0, the corresponding values of y being A254710.

Examples

			10 is in the sequence because the 10th pentagonal number is 145, which is also the 9th centered square number.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,14,-14,-1,1},{1,2,10,25,137},30] (* Harvey P. Dale, Aug 08 2017 *)
  • PARI
    Vec(-x*(x^4+x^3-6*x^2+x+1)/((x-1)*(x^2-4*x+1)*(x^2+4*x+1)) + O(x^100))

Formula

a(n) = a(n-1)+14*a(n-2)-14*a(n-3)-a(n-4)+a(n-5).
G.f.: -x*(x^4+x^3-6*x^2+x+1) / ((x-1)*(x^2-4*x+1)*(x^2+4*x+1)).

A254710 Indices of centered square numbers (A001844) which are also pentagonal numbers (A000326).

Original entry on oeis.org

1, 2, 9, 22, 119, 300, 1651, 4172, 22989, 58102, 320189, 809250, 4459651, 11271392, 62114919, 156990232, 865149209, 2186591850, 12049974001, 30455295662, 167834486799, 424187547412, 2337632841179, 5908170368100, 32559025289701, 82290197605982
Offset: 1

Views

Author

Colin Barker, Feb 06 2015

Keywords

Comments

Also positive integers y in the solutions to 3*x^2 - 4*y^2 - x + 4*y - 2 = 0, the corresponding values of x being A254709.

Examples

			9 is in the sequence because the 9th centered square number is 145, which is also the 10th pentagonal number.
		

Crossrefs

Programs

  • PARI
    Vec(x*(x^3+7*x^2-x-1)/((x-1)*(x^2-4*x+1)*(x^2+4*x+1)) + O(x^100))

Formula

a(n) = a(n-1)+14*a(n-2)-14*a(n-3)-a(n-4)+a(n-5).
G.f.: x*(x^3+7*x^2-x-1) / ((x-1)*(x^2-4*x+1)*(x^2+4*x+1)).

A254711 Pentagonal numbers (A000326) which are also centered square numbers (A001844).

Original entry on oeis.org

1, 5, 145, 925, 28085, 179401, 5448301, 34802825, 1056942265, 6751568605, 205041351065, 1309769506501, 39776965164301, 254088532692545, 7716526200523285, 49291865572847185, 1496966305936352945, 9562367832599661301, 290403746825451948001
Offset: 1

Views

Author

Colin Barker, Feb 06 2015

Keywords

Examples

			145 is in the sequence because it is the 10th pentagonal number and the 9th centered square number.
		

Crossrefs

Programs

  • PARI
    Vec(-x*(x^4+4*x^3-54*x^2+4*x+1)/((x-1)*(x^2-14*x+1)*(x^2+14*x+1)) + O(x^100))

Formula

a(n) = a(n-1)+194*a(n-2)-194*a(n-3)-a(n-4)+a(n-5).
G.f.: -x*(x^4+4*x^3-54*x^2+4*x+1) / ((x-1)*(x^2-14*x+1)*(x^2+14*x+1)).

A254895 Indices of octagonal numbers (A000567) that are also centered square numbers (A001844).

Original entry on oeis.org

1, 13, 53, 1241, 5161, 121573, 505693, 11912881, 49552721, 1167340733, 4855660933, 114387478921, 475805218681, 11208805593493, 46624055769773, 1098348560683361, 4568681660219041, 107626950141375853, 447684178645696213, 10546342765294150201
Offset: 1

Views

Author

Colin Barker, Feb 10 2015

Keywords

Comments

Also positive integers x in the solutions to 6*x^2 - 4*y^2 - 4*x + 4*y - 2 = 0, the corresponding values of y being A253673.

Examples

			13 is in the sequence because the 13th octagonal number is 481, which is also the 16th centered square number.
		

Crossrefs

Programs

  • PARI
    Vec(-x*(x^4+12*x^3-58*x^2+12*x+1)/((x-1)*(x^2-10*x+1)*(x^2+10*x+1)) + O(x^100))

Formula

a(n) = a(n-1)+98*a(n-2)-98*a(n-3)-a(n-4)+a(n-5).
G.f.: -x*(x^4+12*x^3-58*x^2+12*x+1) / ((x-1)*(x^2-10*x+1)*(x^2+10*x+1)).

A254896 Octagonal numbers (A000567) that are also centered square numbers (A001844).

Original entry on oeis.org

1, 481, 8321, 4617761, 79897441, 44339739841, 767175219361, 425750177334721, 7366416376406081, 4088053158428250401, 70732329279075969601, 39253486001477883014881, 679171818371271083701921, 376911968498137474280636161, 6521407729268615666629875041
Offset: 1

Views

Author

Colin Barker, Feb 10 2015

Keywords

Examples

			481 is in the sequence because it is the 13th octagonal number and the 16th centered square number.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,9602,-9602,-1,1},{1,481,8321,4617761,79897441},30] (* Harvey P. Dale, Feb 04 2017 *)
  • PARI
    Vec(-x*(x^4+480*x^3-1762*x^2+480*x+1)/((x-1)*(x^2-98*x+1)*(x^2+98*x+1)) + O(x^100))

Formula

a(n) = a(n-1)+9602*a(n-2)-9602*a(n-3)-a(n-4)+a(n-5).
G.f.: -x*(x^4+480*x^3-1762*x^2+480*x+1) / ((x-1)*(x^2-98*x+1)*(x^2+98*x+1)).

A254373 Digital roots of centered square numbers (A001844).

Original entry on oeis.org

1, 5, 4, 7, 5, 7, 4, 5, 1, 1, 5, 4, 7, 5, 7, 4, 5, 1, 1, 5, 4, 7, 5, 7, 4, 5, 1, 1, 5, 4, 7, 5, 7, 4, 5, 1, 1, 5, 4, 7, 5, 7, 4, 5, 1, 1, 5, 4, 7, 5, 7, 4, 5, 1, 1, 5, 4, 7, 5, 7, 4, 5, 1, 1, 5, 4, 7, 5, 7, 4, 5, 1, 1, 5, 4, 7, 5, 7, 4, 5, 1, 1, 5, 4, 7, 5
Offset: 1

Views

Author

Colin Barker, Jan 29 2015

Keywords

Comments

The sequence is periodic with period 9.

Examples

			a(3) = 4 because the 3rd centered square number is 13, the digital root of which is 4.
		

Crossrefs

Programs

  • Mathematica
    FixedPoint[Plus @@ IntegerDigits[#] &, #] & /@ Table[2 n (n + 1) + 1, {n, 0, 80}] (* Michael De Vlieger, Feb 01 2015 *)
    LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 0, 1},{1, 5, 4, 7, 5, 7, 4, 5, 1},86] (* Ray Chandler, Aug 26 2015 *)
  • PARI
    m=4; vector(200, n, (m*n*(n-1)/2)%9+1)

Formula

a(n) = A010888(A001844(n)).
a(n) = a(n-9).
G.f.: -x*(x^8+5*x^7+4*x^6+7*x^5+5*x^4+7*x^3+4*x^2+5*x+1) / ((x-1)*(x^2+x+1)*(x^6+x^3+1)).

A272267 The union of centered square numbers (A001844) and centered 9-gonal numbers (A060544).

Original entry on oeis.org

1, 5, 10, 13, 25, 28, 41, 55, 61, 85, 91, 113, 136, 145, 181, 190, 221, 253, 265, 313, 325, 365, 406, 421, 481, 496, 545, 595, 613, 685, 703, 761, 820, 841, 925, 946, 1013, 1081, 1105, 1201, 1225, 1301, 1378, 1405, 1513, 1540, 1625, 1711, 1741, 1861, 1891
Offset: 1

Views

Author

Colin Barker, Apr 24 2016

Keywords

Crossrefs

Programs

  • PARI
    cpg(m, n) = m*n*(n-1)/2+1 \\ n-th centered m-gonal number
    cpgr(m, r) = n=1; L=List(); while((t=cpg(m, n))
    				

Formula

Conjectures:
a(n) = a(n-1)+2*a(n-5)-2*a(n-6)-a(n-10)+a(n-11) for n>11.
G.f.: x*(1+4*x+5*x^2+3*x^3+12*x^4+x^5+5*x^6+4*x^7+x^10) / ((1-x)^3*(1+x+x^2+x^3+x^4)^2).

A278244 Least number with the prime signature of the n-th centered square number (A001844(n)).

Original entry on oeis.org

1, 2, 2, 4, 2, 2, 6, 2, 6, 2, 6, 6, 2, 6, 2, 6, 6, 2, 6, 2, 4, 12, 2, 30, 2, 2, 6, 6, 24, 2, 2, 6, 2, 6, 2, 2, 30, 6, 6, 2, 6, 30, 2, 6, 6, 6, 12, 2, 6, 12, 2, 6, 6, 12, 6, 6, 6, 6, 12, 6, 2, 30, 6, 6, 6, 2, 30, 6, 6, 2, 2, 12, 2, 6, 6, 6, 6, 6, 60, 2, 6, 6, 2, 6, 2, 2, 30, 2, 30, 6, 2, 30, 6, 30, 6, 30, 24, 2, 6, 2, 2, 30, 2, 12, 2, 6, 30, 6, 30, 2, 2, 6, 6, 6, 6
Offset: 0

Views

Author

Antti Karttunen, Nov 22 2016

Keywords

Crossrefs

Programs

Formula

a(n) = A046523(A001844(n)).
Previous Showing 11-20 of 340 results. Next