cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 93 results. Next

A299275 Partial sums of A299274.

Original entry on oeis.org

1, 5, 14, 32, 62, 109, 178, 269, 394, 554, 745, 983, 1265, 1596, 1987, 2435, 2943, 3525, 4175, 4884, 5674, 6551, 7515, 8562, 9702, 10955, 12308, 13771, 15331, 16998, 18799, 20707, 22750, 24915, 27212, 29683, 32263, 35000, 37893, 40913, 44115, 47459, 50988, 54674, 58530, 62612, 66817
Offset: 0

Views

Author

N. J. A. Sloane, Feb 10 2018

Keywords

Comments

First 120 terms computed by Davide M. Proserpio using ToposPro.

Crossrefs

Cf. A299274.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.

Formula

There is a conjectured g.f., see the g.f. for A299274 and divide by 1-x. Note: this should not be used to generate a b-file. - N. J. A. Sloane, Feb 13 2018

A299276 Partial sums of A008137.

Original entry on oeis.org

1, 5, 14, 31, 59, 101, 161, 242, 347, 479, 641, 837, 1070, 1343, 1659, 2021, 2433, 2898, 3419, 3999, 4641, 5349, 6126, 6975, 7899, 8901, 9985, 11154, 12411, 13759, 15201, 16741, 18382, 20127, 21979, 23941, 26017, 28210, 30523, 32959, 35521, 38213, 41038
Offset: 0

Views

Author

N. J. A. Sloane, Feb 10 2018

Keywords

Comments

Euler transform of length 6 sequence [5, -1, 1, -1, 1, -1]. - Michael Somos, Oct 03 2018

Examples

			G.f. = 1 + 5*x + 14*x^2 + 31*x^3 + 59*x^4 + 101*x^5 + 161*x^6 + ... - _Michael Somos_, Oct 03 2018
		

Crossrefs

Cf. A008137.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.

Programs

  • Mathematica
    a[ n_] := (8 n^3 + 12 n^2 + 40 n + 18 - {3, 3, 0, -3, -3, 3}[[Mod[n, 5] + 1]]) / 15; (* Michael Somos, Oct 03 2018 *)
  • PARI
    Vec((1 + x)^3*(1 - x + x^2)*(1 + x^2) / ((1 - x)^4*(1 + x + x^2 + x^3 + x^4)) + O(x^60)) \\ Colin Barker, Feb 11 2018
    
  • PARI
    {a(n) = (8*n^3 + 12*n^2 + 40*n + 18 - 3*(n%5<2) + 3*(n%5>2)) / 15}; /* Michael Somos, Oct 03 2018 */

Formula

From Colin Barker, Feb 11 2018: (Start)
G.f.: (1 + x)^3*(1 - x + x^2)*(1 + x^2) / ((1 - x)^4*(1 + x + x^2 + x^3 + x^4)).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + a(n-5) - 3*a(n-6) + 3*a(n-7) - a(n-8) for n>7.
(End)
a(n) = -a(-1-n) for all n in Z.

A299277 Coordination sequence for "pcu-i" 3D uniform tiling.

Original entry on oeis.org

1, 5, 13, 26, 46, 73, 104, 140, 187, 240, 292, 352, 417, 482, 567, 660, 740, 838, 944, 1031, 1150, 1290, 1399, 1531, 1677, 1787, 1944, 2130, 2261, 2431, 2624, 2750, 2941, 3180, 3334, 3538, 3777, 3920, 4149, 4440, 4610, 4852, 5144, 5297, 5560, 5910, 6097, 6373, 6717, 6881, 7182, 7590, 7787, 8101, 8504, 8672
Offset: 0

Views

Author

N. J. A. Sloane, Feb 10 2018

Keywords

Comments

First 80 terms computed by Davide M. Proserpio using ToposPro.

References

  • B. Grünbaum, Uniform tilings of 3-space, Geombinatorics, 4 (1994), 49-56. See tiling #20.

Crossrefs

See A299278 for partial sums.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.

Programs

  • Mathematica
    CoefficientList[Series[(x^16-x^15+x^14-2x^13+2x^12-x^11+4x^10+x^9+9x^8+12x^6-x^5+ 9x^4+4x^2+1)(x+1)^5/((1+x^2)(1-x^3)(1-x^6)^2),{x,0,60}],x] (* or *) LinearRecurrence[{ 2,-4,7,-10,14,-16,18,-18,16,-14,10,-7,4,-2,1},{1,5,13,26,46,73,104,140,187,240,292,352,417,482,567,660,740,838,944,1031},60] (* Harvey P. Dale, Mar 09 2024 *)
  • PARI
    Vec((x^16 - x^15 + x^14 - 2*x^13 + 2*x^12 - x^11 + 4*x^10 + x^9 + 9*x^8 + 12*x^6 - x^5 + 9*x^4 + 4*x^2 + 1) * (x + 1)^5 / ((1 + x^2)*(1 - x^3)*(1 - x^6)^2) + O(x^60)) \\ Colin Barker, Feb 14 2018

Formula

G.f.: (x^16 - x^15 + x^14 - 2*x^13 + 2*x^12 - x^11 + 4*x^10 + x^9 + 9*x^8 + 12*x^6 - x^5 + 9*x^4 + 4*x^2 + 1) * (x + 1)^5 / ((1 + x^2)*(1 - x^3)*(1 - x^6)^2). - N. J. A. Sloane, Feb 13 2018
a(n) = -a(n-2) + a(n-3) + a(n-5) + 2*a(n-6) + 2*a(n-8) - 2*a(n-9) - 2*a(n-11) - a(n-12) - a(n-14) + a(n-15) + a(n-17) for n>21. - Colin Barker, Feb 14 2018

A299278 Partial sums of A299277.

Original entry on oeis.org

1, 6, 19, 45, 91, 164, 268, 408, 595, 835, 1127, 1479, 1896, 2378, 2945, 3605, 4345, 5183, 6127, 7158, 8308, 9598, 10997, 12528, 14205, 15992, 17936, 20066, 22327, 24758, 27382, 30132, 33073, 36253, 39587, 43125, 46902, 50822, 54971, 59411, 64021, 68873, 74017, 79314, 84874
Offset: 0

Views

Author

N. J. A. Sloane, Feb 10 2018

Keywords

Comments

First 80 terms computed by Davide M. Proserpio using ToposPro.

Crossrefs

Cf. A299277.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.

Programs

  • PARI
    Vec((x^16 - x^15 + x^14 - 2*x^13 + 2*x^12 - x^11 + 4*x^10 + x^9 + 9*x^8 + 12*x^6 - x^5 + 9*x^4 + 4*x^2 + 1) * (x + 1)^5 / ((1 - x)*(1 + x^2)*(1 - x^3)*(1 - x^6)^2) + O(x^60)) \\ Colin Barker, Feb 14 2018

Formula

G.f.: (x^16 - x^15 + x^14 - 2*x^13 + 2*x^12 - x^11 + 4*x^10 + x^9 + 9*x^8 + 12*x^6 - x^5 + 9*x^4 + 4*x^2 + 1) * (x + 1)^5 / ((1 - x)*(1 + x^2)*(1 - x^3)*(1 - x^6)^2). - N. J. A. Sloane, Feb 13 2018
a(n) = a(n-1) - a(n-2) + 2*a(n-3) - a(n-4) + a(n-5) + a(n-6) - 2*a(n-7) + 2*a(n-8) - 4*a(n-9) + 2*a(n-10) - 2*a(n-11) + a(n-12) + a(n-13) - a(n-14) + 2*a(n-15) - a(n-16) + a(n-17) - a(n-18) for n>21. - Colin Barker, Feb 14 2018

A299280 Partial sums of A299279.

Original entry on oeis.org

1, 9, 39, 107, 233, 413, 699, 1047, 1557, 2129, 2927, 3779, 4929, 6117, 7683, 9263, 11309, 13337, 15927, 18459, 21657, 24749, 28619, 32327, 36933, 41313, 46719, 51827, 58097, 63989, 71187, 77919, 86109, 93737, 102983, 111563, 121929, 131517, 143067, 153719, 166517
Offset: 0

Views

Author

N. J. A. Sloane, Feb 10 2018

Keywords

Crossrefs

Cf. A299279.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.

Programs

  • Mathematica
    LinearRecurrence[{1,3,-3,-3,3,1,-1},{1,9,39,107,233,413,699,1047},50] (* Harvey P. Dale, Jul 22 2021 *)
  • PARI
    Vec((1 + 8*x + 27*x^2 + 44*x^3 + 39*x^4 - 3*x^6 + 4*x^7) / ((1 - x)^4*(1 + x)^3) + O(x^60)) \\ Colin Barker, Feb 11 2018

Formula

From Colin Barker, Feb 11 2018: (Start)
G.f.: (1 + 8*x + 27*x^2 + 44*x^3 + 39*x^4 - 3*x^6 + 4*x^7) / ((1 - x)^4*(1 + x)^3).
a(n) = (5*n^3 + 8*n^2 + 6*n - 6) / 2 for n>0 and even.
a(n) = (5*n^3 + 7*n^2 + 5*n + 1) / 2 for n odd.
a(n) = a(n-1) + 3*a(n-2) - 3*a(n-3) - 3*a(n-4) + 3*a(n-5) + a(n-6) - a(n-7) for n>7. (End)
E.g.f.: (8 - (6 - 17*x - 23*x^2 - 5*x^3)*cosh(x) + (1 + 19*x + 22*x^2 + 5*x^3)*sinh(x))/2. - Stefano Spezia, Jun 06 2024

A299281 Coordination sequence for "reo-e" 3D uniform tiling.

Original entry on oeis.org

1, 6, 19, 41, 72, 114, 166, 224, 288, 364, 454, 550, 648, 758, 886, 1020, 1152, 1296, 1462, 1634, 1800, 1978, 2182, 2392, 2592, 2804, 3046, 3294, 3528, 3774, 4054, 4340, 4608, 4888, 5206, 5530, 5832, 6146, 6502, 6864, 7200, 7548, 7942, 8342, 8712, 9094, 9526, 9964, 10368
Offset: 0

Views

Author

N. J. A. Sloane, Feb 10 2018

Keywords

Comments

First 20 terms computed by Davide M. Proserpio using ToposPro.

References

  • B. Grünbaum, Uniform tilings of 3-space, Geombinatorics, 4 (1994), 49-56. See tiling #9.

Crossrefs

See A299282 for partial sums.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.
Cf. A056594.

Programs

  • PARI
    Vec((1 + x)*(1 + x^2 + x^3)*(1 + 2*x + 3*x^2 + x^4 - 2*x^5 + x^6) / ((1 - x)^3*(1 + x^2)^2) + O(x^60)) \\ Colin Barker, Feb 14 2018

Formula

G.f.: (x+1)*(x^3+x^2+1)*(x^6-2*x^5+x^4+3*x^2+2*x+1) / ((x^2+1)^2*(1-x)^3). - N. J. A. Sloane, Feb 12 2018
a(n) = 3*a(n-1) - 5*a(n-2) + 7*a(n-3) - 7*a(n-4) + 5*a(n-5) - 3*a(n-6) + a(n-7) for n>8. - Colin Barker, Feb 14 2018
a(n) = (9*n^2 + 4*(1 - A056594(n)) - (n - 4)*A056594(n+1))/2 for n > 3. - Stefano Spezia, Apr 23 2023

Extensions

a(21)-a(40) from Davide M. Proserpio, Feb 12 2018

A299282 Partial sums of A299281.

Original entry on oeis.org

1, 7, 26, 67, 139, 253, 419, 643, 931, 1295, 1749, 2299, 2947, 3705, 4591, 5611, 6763, 8059, 9521, 11155, 12955, 14933, 17115, 19507, 22099, 24903, 27949, 31243, 34771, 38545, 42599, 46939, 51547, 56435, 61641, 67171, 73003, 79149, 85651, 92515, 99715, 107263, 115205
Offset: 0

Views

Author

N. J. A. Sloane, Feb 10 2018

Keywords

Crossrefs

The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.

Programs

  • PARI
    Vec((1 + x)*(1 + x^2 + x^3)*(1 + 2*x + 3*x^2 + x^4 - 2*x^5 + x^6) / ((1 - x)^4*(1 + x^2)^2) + O(x^70)) \\ Colin Barker, Feb 14 2018

Formula

From Colin Barker, Feb 14 2018: (Start)
G.f.: (1 + x)*(1 + x^2 + x^3)*(1 + 2*x + 3*x^2 + x^4 - 2*x^5 + x^6) / ((1 - x)^4*(1 + x^2)^2).
a(n) = 4*a(n-1) - 8*a(n-2) + 12*a(n-3) - 14*a(n-4) + 12*a(n-5) - 8*a(n-6) + 4*a(n-7) - a(n-8) for n>8. (End)
a(n) = (n*(6*n^2 + 9*n + 11) - 12 + (n - 8)*A056594(n) - (n + 1)*A056594(n+1))/4 for n > 2. - Stefano Spezia, Apr 23 2023

A299283 Coordination sequence for "svh" 3D uniform tiling.

Original entry on oeis.org

1, 7, 22, 48, 84, 130, 186, 253, 330, 417, 514, 622, 740, 868, 1006, 1155, 1314, 1483, 1662, 1852, 2052, 2262, 2482, 2713, 2954, 3205, 3466, 3738, 4020, 4312, 4614, 4927, 5250, 5583, 5926, 6280, 6644, 7018, 7402, 7797, 8202, 8617, 9042, 9478, 9924, 10380
Offset: 0

Views

Author

N. J. A. Sloane, Feb 10 2018

Keywords

Comments

First 20 terms computed by Davide M. Proserpio using ToposPro.

References

  • B. Grünbaum, Uniform tilings of 3-space, Geombinatorics, 4 (1994), 49-56. See tiling #15.

Crossrefs

See A299284 for partial sums.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.

Programs

  • Mathematica
    LinearRecurrence[{2,-1,0,1,-2,1},{1,7,22,48,84,130,186},50] (* Harvey P. Dale, May 19 2019 *)
  • PARI
    Vec((1 + 5*x + 9*x^2 + 11*x^3 + 9*x^4 + 5*x^5 + x^6) / ((1 - x)^3*(1 + x)*(1 + x^2)) + O(x^60)) \\ Colin Barker, Feb 11 2018

Formula

G.f.: (x^6+5*x^5+9*x^4+11*x^3+9*x^2+5*x+1)/((x+1)*(x^2+1)*(1-x)^3).
a(n) = 2*a(n-1) - a(n-2) + a(n-4) - 2*a(n-5) + a(n-6) for n>6. - Colin Barker, Feb 11 2018
a(n) = (29 - (-1)^n + 82*n^2 + 4*A056594(n))/16 for n > 0. - Stefano Spezia, Jun 06 2024

A299284 Partial sums of A299283.

Original entry on oeis.org

1, 8, 30, 78, 162, 292, 478, 731, 1061, 1478, 1992, 2614, 3354, 4222, 5228, 6383, 7697, 9180, 10842, 12694, 14746, 17008, 19490, 22203, 25157, 28362, 31828, 35566, 39586, 43898, 48512, 53439, 58689, 64272, 70198, 76478, 83122, 90140, 97542, 105339, 113541
Offset: 0

Views

Author

N. J. A. Sloane, Feb 10 2018

Keywords

Crossrefs

Cf. A299283.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.

Programs

  • Mathematica
    LinearRecurrence[{3,-3,1,1,-3,3,-1},{1,8,30,78,162,292,478},50] (* Harvey P. Dale, Mar 30 2024 *)
  • PARI
    Vec((1 + 5*x + 9*x^2 + 11*x^3 + 9*x^4 + 5*x^5 + x^6) / ((1 - x)^4*(1 + x)*(1 + x^2)) + O(x^60)) \\ Colin Barker, Feb 11 2018

Formula

From Colin Barker, Feb 11 2018: (Start)
G.f.: (1 + 5*x + 9*x^2 + 11*x^3 + 9*x^4 + 5*x^5 + x^6) / ((1 - x)^4*(1 + x)*(1 + x^2)).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + a(n-4) - 3*a(n-5) + 3*a(n-6) - a(n-7) for n>6.
(End)

A299285 Coordination sequence for "tea" 3D uniform tiling.

Original entry on oeis.org

1, 10, 33, 73, 128, 199, 285, 388, 506, 640, 789, 955, 1136, 1333, 1545, 1774, 2018, 2278, 2553, 2845, 3152, 3475, 3813, 4168, 4538, 4924, 5325, 5743, 6176, 6625, 7089, 7570, 8066, 8578, 9105, 9649, 10208, 10783, 11373, 11980, 12602, 13240, 13893
Offset: 0

Views

Author

N. J. A. Sloane, Feb 10 2018

Keywords

Comments

First 20 terms computed by Davide M. Proserpio using ToposPro.

Crossrefs

See A299286 for partial sums.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.
Cf. A056594.

Programs

  • Mathematica
    LinearRecurrence[{2,-1,0,1,-2,1},{1,10,33,73,128,199,285},50] (* Harvey P. Dale, May 09 2022 *)
  • PARI
    a(n)=([0,1,0,0,0,0; 0,0,1,0,0,0; 0,0,0,1,0,0; 0,0,0,0,1,0; 0,0,0,0,0,1; 1,-2,1,0,-1,2]^n*[1;10;33;73;128;199])[1,1] \\ Charles R Greathouse IV, Oct 18 2022

Formula

From Colin Barker, Feb 11 2018: (Start)
G.f.: (1 + 8*x + 14*x^2 + 17*x^3 + 14*x^4 + 8*x^5 + x^6) / ((1 - x)^3*(1 + x)*(1 + x^2)).
a(n) = 2*a(n-1) - a(n-2) + a(n-4) - 2*a(n-5) + a(n-6) for n>6. (End)
[I suspect Barker's formulas only conjectures. - N. J. A. Sloane, Jun 12 2024]
If the above formulas are true, then a(n) = (31 - 3*(-1)^n + 126*n^2 + 4*A056594(n))/16 for n > 0. - Stefano Spezia, Jun 08 2024
Previous Showing 41-50 of 93 results. Next