cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A061182 Third column (m=2) of triangle A060921 (bisection of Fibonacci triangle, odd part).

Original entry on oeis.org

3, 22, 111, 474, 1836, 6666, 23109, 77378, 252177, 804228, 2519640, 7777860, 23709783, 71501422, 213619683, 633011454, 1862264196, 5443487406, 15820188729, 45739697306, 131624104677, 377157259848
Offset: 0

Views

Author

Wolfdieter Lang, Apr 20 2001

Keywords

Comments

Numerator polynomial is sum(A061177(2,m)*x^m,m=0..2).

Crossrefs

Formula

a(n)= A060921(n+2, 2).
G.f.: (3*(1+x^2)-5*x)/(1-3*x+x^2)^3.

A123971 Triangle T(n,k), read by rows, defined by T(n,k)=3*T(n-1,k)-T(n-1,k-1)-T(n-2,k), T(0,0)=1, T(1,0)=2, T(1,1)=-1, T(n,k)=0 if k<0 or if k>n.

Original entry on oeis.org

1, 2, -1, 5, -5, 1, 13, -19, 8, -1, 34, -65, 42, -11, 1, 89, -210, 183, -74, 14, -1, 233, -654, 717, -394, 115, -17, 1, 610, -1985, 2622, -1825, 725, -165, 20, -1, 1597, -5911, 9134, -7703, 3885, -1203, 224, -23, 1, 4181, -17345, 30691, -30418, 18633, -7329
Offset: 0

Views

Author

Gary W. Adamson and Roger L. Bagula, Oct 30 2006

Keywords

Comments

This entry is the result of merging two sequences, this one and a later submission by Philippe Deléham, Nov 29 2013 (with edits from Ralf Stephan, Dec 12 2013). Most of the present version is the work of Philippe Deléham, the only things remaining from the original entry are the sequence data and the Mathematica program. - N. J. A. Sloane, May 31 2014
Subtriangle of the triangle given by (0, 2, 1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, -2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
Apart from signs, equals A126124.
Row sums = 1.
Sum_{k=0..n} T(n,k)*(-x)^k = A001519(n+1), A079935(n+1), A004253(n+1), A001653(n+1), A049685(n), A070997(n), A070998(n), A072256(n+1), A078922(n+1), A077417(n), A085260(n+1), A001570(n+1) for x=0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 respectively.

Examples

			Triangle begins:
  1
  2, -1
  5, -5, 1
  13, -19, 8, -1
  34, -65, 42, -11, 1
  89, -210, 183, -74, 14, -1
  233, -654, 717, -394, 115, -17, 1
Triangle (0, 2, 1/2, 1/2, 0, 0, ...) DELTA (1, -2, 0, 0, ...) begins:
  1
  0, 1
  0, 2, -1
  0, 5, -5, 1
  0, 13, -19, 8, -1
  0, 34, -65, 42, -11, 1
  0, 89, -210, 183, -74, 14, -1
  0, 233, -654, 717, -394, 115, -17, 1
		

Crossrefs

Programs

  • Mathematica
    Mathematica ( general k th center) Clear[M, T, d, a, x, k] k = 3 T[n_, m_, d_] := If[ n == m && n < d && m < d, k, If[n == m - 1 || n == m + 1, -1, If[n == m == d, k - 1, 0]]] M[d_] := Table[T[n, m, d], {n, 1, d}, {m, 1, d}] Table[M[d], {d, 1, 10}] Table[Det[M[d]], {d, 1, 10}] Table[Det[M[d] - x*IdentityMatrix[d]], {d, 1, 10}] a = Join[{M[1]}, Table[CoefficientList[ Det[M[d] - x*IdentityMatrix[d]], x], {d, 1, 10}]] Flatten[a] MatrixForm[a] Table[NSolve[Det[M[d] - x*IdentityMatrix[d]] == 0, x], {d, 1, 10}] Table[x /. NSolve[Det[M[d] - x*IdentityMatrix[d]] == 0, x][[d]], {d, 1, 10}]
  • PARI
    T(n,k)=polcoeff(polcoeff(Ser((1-x)/(1+(y-3)*x+x^2)),n,x),n-k,y) \\ Ralf Stephan, Dec 12 2013
    
  • Sage
    @CachedFunction
    def A123971(n,k): # With T(0,0) = 1!
        if n< 0: return 0
        if n==0: return 1 if k == 0 else 0
        h = 2*A123971(n-1,k) if n==1 else 3*A123971(n-1,k)
        return A123971(n-1,k-1) - A123971(n-2,k) - h
    for n in (0..9): [A123971(n,k) for k in (0..n)] # Peter Luschny, Nov 20 2012

Formula

T(n,k) = (-1)^n*A126124(n+1,k+1).
T(n,k) = (-1)^k*Sum_{m=k..n} binomial(m,k)*binomial(m+n,2*m). - Wadim Zudilin, Jan 11 2012
G.f.: (1-x)/(1+(y-3)*x+x^2).
T(n,0) = A001519(n+1) = A000045(2*n+1).
T(n+1,1) = -A001870(n).

Extensions

Edited by N. J. A. Sloane, May 31 2014

A129720 Number of 0's in odd position in all Fibonacci binary words of length n. A Fibonacci binary word is a binary word having no 00 subword.

Original entry on oeis.org

0, 1, 1, 4, 5, 14, 19, 46, 65, 145, 210, 444, 654, 1331, 1985, 3926, 5911, 11434, 17345, 32960, 50305, 94211, 144516, 267384, 411900, 754309, 1166209, 2116936, 3283145, 5914310, 9197455, 16458034, 25655489, 45638101, 71293590, 126159156
Offset: 0

Views

Author

Emeric Deutsch, May 13 2007

Keywords

Examples

			a(4)=5 because in 1110, 1111, 110'1, 1010, 1011, 0'110, 0'111 and 0'10'1 one has altogether five 0's in odd position (marked by ').
		

Crossrefs

Programs

  • Maple
    g:=z*(1-z^2)/(1-z-z^2)^2/(1+z-z^2): gser:=series(g,z=0,43): seq(coeff(gser,z,n),n=0..40);

Formula

G.f.: z(1-z^2)/((1-z-z^2)^2*(1+z-z^2)).
a(2n) = a(2n-1) + a(2n-2) (n >= 1).
a(2n-1) = A030267(n).
a(2n) = A129722(2n) = A001870(n-1).
a(n) = Sum_{k=0..ceiling(n/2)} k*A129719(n,k).

A166336 Expansion of (1 - 4*x + 7*x^2 - 4*x^3 + x^4)/(1 - 7*x + 17*x^2 - 17*x^3 + 7*x^4 - x^5).

Original entry on oeis.org

1, 3, 11, 39, 131, 421, 1309, 3971, 11823, 34691, 100611, 289033, 823801, 2332419, 6566291, 18394911, 51310979, 142587181, 394905493, 1090444931, 3002921271, 8249479163, 22612505091, 61857842449, 168903452401, 460409998851
Offset: 0

Views

Author

Paul Barry, Oct 12 2009

Keywords

Comments

The diagonal sums of number triangle A166335 are 1, 0, 3, 0, 11, 0, ...

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1-4x+7x^2-4x^3+x^4)/(1-7x+17x^2-17x^3+7x^4-x^5),{x,0,30}],x] (* or *) LinearRecurrence[{7,-17,17,-7,1},{1,3,11,39,131},30] (* Harvey P. Dale, Jul 05 2014 *)

Formula

G.f.: (1 - 4*x + 7*x^2 - 4*x^3 + x^4)/((1 - x)*(1 - 3*x + x^2)^2);
a(n) = 1 + 2*Sum{k=0..n} k*C(n + k, 2*k) = 1 + 2*Sum{k=0..n} (n-k)*C(2*n - k, k) = 1 + 2*A001870(n).
a(0) = 1, a(1) = 3, a(2) = 11, a(3) = 39, a(4) = 131, and a(n) = -17*a(n-1) + 17*a(n-2) - 7*a(n-3) + a(n-4) for n >= 4. - Harvey P. Dale, Jul 05 2014

A121466 Triangle read by rows: T(n,k) = is the number of directed column-convex polyominoes of area n having along the lower contour exactly k reentrant corners, i.e., a vertical step that is followed by a horizontal step (n >= 1, k >= 0).

Original entry on oeis.org

1, 2, 4, 1, 8, 5, 16, 17, 1, 32, 49, 8, 64, 129, 39, 1, 128, 321, 150, 11, 256, 769, 501, 70, 1, 512, 1793, 1524, 338, 14, 1024, 4097, 4339, 1375, 110, 1, 2048, 9217, 11762, 4973, 640, 17, 4096, 20481, 30705, 16508, 3075, 159, 1, 8192, 45057, 77808, 51340, 12918
Offset: 1

Views

Author

Emeric Deutsch, Aug 02 2006

Keywords

Comments

Also number of nondecreasing Dyck paths of semilength n and such that there are k positive differences in the sequence of the valley altitudes, preceded by a 0. Example: T(5,2)=1 because we have UUDUUDUDDD, where U=(1,1) and D=(1,-1) (the valleys are at the altitudes 1 and 2 with two "jumps" in the sequence 0,1,2).
Row n has ceiling(n/2) terms.
Row sums are the odd-subscripted Fibonacci numbers (A001519).

Examples

			T(5,2)=1 because we have the directed column-convex polyomino [(0,2),(1,3),(2,3)] (here the j-th pair gives the lower and upper levels of the j-th column).
Triangle starts:
   1;
   2;
   4,   1;
   8,   5;
  16,  17,   1;
  32,  49,   8;
  64, 129,  39,   1;
		

Crossrefs

Programs

  • Maple
    with(combinat): T:=(n,k)->add(2^j*binomial(n-k-2-j,k-1)*binomial(k+j,k),j=0..n-2*k-1): for n from 0 to 15 do seq(T(n,k),k=0..ceil(n/2)-1) od; # yields sequence in triangular form

Formula

T(n,0) = 2^(n-1) = A000079(n-1).
T(n,1) = 1 + (n-3)*2^(n-2) = A000337(n-2).
T(n,2) = A055581(n-5).
Sum_{k=0..ceiling(n/2)-1} k*T(n,k) = A001870(n-3).
T(n,k) = Sum_{j=0..n-2*k-1} 2^j*binomial(n-k-2-j,k-1)*binomial(k+j,k) for k >= 1; T(n,0) = 2^(n-1).
G.f.: G(t,z) = z(1-z)/(1-3z+2z^2-tz^2).

A202209 Triangle T(n,k), read by rows, given by (2, 1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 2, 0, 5, 1, 0, 13, 5, 0, 0, 34, 19, 1, 0, 0, 89, 65, 8, 0, 0, 0, 233, 210, 42, 1, 0, 0, 0, 610, 654, 183, 11, 0, 0, 0, 0, 1597, 1985, 717, 74, 1, 0, 0, 0, 0, 4181, 5911, 2622, 394, 14, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Philippe Deléham, Dec 14 2011

Keywords

Comments

Riordan array ((1-x)/(1-3x+x^2), x^2/(1-3x+x^2)) .

Examples

			Triangle begins :
1
2, 0
5, 1, 0
13, 5, 0, 0
34, 19, 1, 0, 0
89, 65, 8, 0, 0, 0
233, 210, 42, 1, 0, 0, 0
		

Crossrefs

Cf. A000045, A000079, A001519, A001870, A001906, A126124, A202207 (antidiagonal sums)

Formula

T(n,k) = 3*T(n-1,k) - T(n-2,k) + T(n-2,k-1).
G.f.: (1-x)/(1-3x+(1-y)*x^2).
Sum_{k, 0<=k<=n} T(n,k)*x^k = A057682(n+1), A000079(n), A122367(n), A025192(n), A052924(n), A104934(n), A202206(n), A122117(n), A197189(n) for x = -2, -1, 0, 1, 2, 3, 4, 5, 6 respectively.
T(n,0) = A122367(n) = A000045(2n+1).

A206800 Riordan array (1/(1-3*x+x^2), x*(1-x)/(1-3*x+x^2)).

Original entry on oeis.org

1, 3, 1, 8, 5, 1, 21, 19, 7, 1, 55, 65, 34, 9, 1, 144, 210, 141, 53, 11, 1, 377, 654, 534, 257, 76, 13, 1, 987, 1985, 1905, 1111, 421, 103, 15, 1, 2584, 5911, 6512, 4447, 2041, 641, 134, 17, 1, 6765, 17345, 21557, 16837, 9038, 3440, 925, 169, 19, 1
Offset: 0

Views

Author

Philippe Deléham, Feb 12 2012

Keywords

Examples

			Triangle begins :
1
3, 1
8, 5, 1
21, 19, 7, 1
55, 65, 34, 9, 1
144, 210, 141, 53, 11, 1
377, 654, 534, 257, 76, 13, 1
987, 1985, 1905, 1111, 421, 103, 15, 1
2584, 5911, 6512, 4447, 2041, 641, 134, 17, 1
6765, 17345, 21557, 16837, 9038, 3440, 925, 169, 19, 1
Triangle (0,3,-1/3,1/3,0,0,0,0,0,...) DELTA (1,0,-1/3,1/3,0,0,0,0,...) begins :
1
0, 1
0, 3, 1
0, 8, 5, 1
0, 21, 19, 7, 1
0, 55, 65, 34, 9, 1...
		

References

  • Subtriangle of the triangle given by (0, 3, -1/3, 1/3, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, -1/3, 1/3, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
  • Antidiagonal sums are A072264(n).

Crossrefs

Formula

T(n,k) = 3*T(n-1,k) + T(n-1,k-1) - T(n-2,k) - T(n-2,k-1).
G.f.: 1/(1-(y+3)*x+(y+1)*x^2).
Sum_{k, 0<=k<=n} T(n,k)*x^k = (-1)^n* A015587(n+1), (-1)^n*A190953(n+1), (-1)^n*A015566(n+1), (-1)*A189800(n+1), (-1)^n*A015541(n+1), (-1)^n*A085939(n+1), (-1)^n*A015523(n+1), (-1)^n*A063727(n), (-1)^n*A006130(n), A077957(n), A000045(n+1), A000079(n), A001906(n+1), A007070(n), A116415(n), A084326(n+1), A190974(n+1), A190978(n+1), A190984(n+1), A190990(n+1), A190872(n) for x = -12, -11, -10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8 respectively.

A121257 Number of conjugated cycles composed of six carbons in (1,1)-nanotubes in terms of the number of naphthalene units.

Original entry on oeis.org

4, 20, 76, 260, 840, 2616, 7940, 23644, 69380, 201220, 578064, 1647600, 4664836, 13132580, 36789820, 102621956, 285174360, 789810984, 2180889860, 6005842540, 16498958324, 45225010180, 123715684896, 337806904800, 920819997700
Offset: 1

Views

Author

Parthasarathy Nambi, Aug 22 2006

Keywords

Comments

See Table 2 on page 412 of Lukovits and Janezic paper for details.

Examples

			If n=5 then the number of conjugated cycles composed of six carbons in (1,1)-nanotubes is 840 which is the fifth term in the sequence. Here n is the number of naphthalene units.
		

References

  • I. Lukovits and D. Janezic, "Enumeration of conjugated circuits in nanotubes", J. Chem. Inf. Comput. Sci., vol. 44 (2004) pp. 410-414.

Programs

  • Maple
    Kn11 := proc(n) if n <= 0 then n+2 ; else 3*procname(n-1)-procname(n-2) ; fi; end: Ksub11 := proc(n) if n = -1 then 1 ; elif n = 0 then 3 ; else Kn11(n)+procname(n-1) ; fi; end: a := proc(n) 4*add( Ksub11(j)*Kn11(n-3-j),j=-1..n-2) ; end: seq(a(n),n=0..20) ; # R. J. Mathar, Mar 18 2009

Formula

a(n)= 6a(n-1)-11a(n-2)+6a(n-3)-a(n-4)=4*A001870(n-1). G.f.: -4*x*(-1+x)/(x^2-3*x+1)^2. - R. J. Mathar, Mar 18 2009

Extensions

More terms from R. J. Mathar, Mar 18 2009
Previous Showing 11-18 of 18 results.