cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A218447 a(n) = Sum_{k>=0} floor(n/(5*k + 4)).

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 1, 1, 2, 3, 3, 3, 4, 4, 5, 5, 6, 6, 7, 8, 9, 9, 9, 9, 11, 11, 11, 12, 14, 15, 15, 15, 16, 16, 17, 17, 19, 19, 20, 21, 22, 22, 23, 23, 25, 26, 26, 26, 28, 29, 29, 29, 30, 30, 32, 32, 34, 35, 36, 37, 38, 38, 38, 39, 41, 41, 41, 41, 43, 44, 45, 45, 48, 48, 49, 49, 51, 51, 52, 53, 54
Offset: 0

Views

Author

Benoit Cloitre, Oct 28 2012

Keywords

Crossrefs

Partial sums of A001899.

Programs

  • Maple
    g:= n -> nops(select(t -> t mod 5 = 4, numtheory:-divisors(n))):
    g(0):= 0:
    ListTools:-PartialSums(map(g, [$0..100])); # Robert Israel, Apr 29 2021
  • Maxima
    A218447[n]:=sum(floor(n/(5*k+4)),k,0,n)$
    makelist(A218447[n],n,0,80); /* Martin Ettl, Oct 20 2012 */
  • PARI
    a(n)=sum(k=0,n,(n\(5*k+4)))
    

Formula

a(n) = n*log(n)/5 + c*n + O(n^(1/3)*log(n)), where c = gamma(4,5) - (1 - gamma)/5 = A256849 - (1 - A001620)/5 = -0.213442... (Smith and Subbarao, 1981). - Amiram Eldar, Apr 20 2025

A364046 Expansion of Sum_{k>0} x^(4*k) / (1 + x^(5*k)).

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, -1, 0, 0, 1, 0, 1, 0, 1, 0, -1, -1, 1, 0, 0, 0, 2, 0, 0, -1, 2, -1, 0, 0, 1, 0, 1, 0, 0, 0, -1, -1, 1, 0, 1, 0, 2, -1, 0, 0, 2, -1, 0, 0, 1, 0, 0, 0, 2, -1, -1, -1, 1, 0, 0, -1, 2, 0, 0, 0, 2, -1, 1, 0, 1, 0, 1, 0, 0, 0, -1, -1, 1, -1, 0, 0, 3, 0, 0, -1, 2, -1, -1, 0, 1, 0, 1, -1, 2, 0, 0, -2
Offset: 1

Views

Author

Seiichi Manyama, Jul 03 2023

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := DivisorSum[n, (-1)^# &, Mod[#, 5] == 4 &]; Array[a, 100] (* Amiram Eldar, Jul 03 2023 *)
  • PARI
    a(n) = sumdiv(n, d, (d%5==4)*(-1)^d);

Formula

G.f.: Sum_{k>0} (-1)^(k-1) * x^(5*k-1) / (1 - x^(5*k-1)).
a(n) = Sum_{d|n, d==4 (mod 5)} (-1)^d.

A364420 Number of divisors of n of the form 5*k+4 that are at most sqrt(n).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 2
Offset: 1

Views

Author

Ilya Gutkovskiy, Jul 23 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Count[Divisors[n], _?(# <= Sqrt[n] && MemberQ[{4}, Mod[#, 5]] &)], {n, 108}]
    nmax = 108; CoefficientList[Series[Sum[x^(5 k + 4)^2/(1 - x^(5 k + 4)), {k, 0, nmax}], {x, 0, nmax}], x] // Rest

Formula

G.f.: Sum_{k>=0} x^(5*k+4)^2 / (1 - x^(5*k+4)).
Previous Showing 11-13 of 13 results.