cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 259 results. Next

A025123 a(n) = s(1)*t(n) + s(2)*t(n-1) + ... + s(k)*t(n-k+1), where k = floor(n/2), s = A001950 (upper Wythoff sequence), t = A023533.

Original entry on oeis.org

0, 0, 2, 5, 7, 0, 0, 0, 2, 5, 7, 10, 13, 15, 18, 20, 23, 0, 2, 5, 7, 10, 13, 15, 18, 20, 23, 26, 28, 31, 34, 36, 39, 43, 49, 54, 59, 13, 15, 18, 20, 23, 26, 28, 31, 34, 36, 39, 41, 44, 47, 49, 52, 54, 59, 65, 69, 75, 81, 85, 91, 95, 101, 107, 111, 117, 123, 36, 39, 41, 44, 47, 49, 52, 54, 57, 60, 62
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Magma
    A023533:= func< n | Binomial(Floor((6*n-1)^(1/3)) +2, 3) ne n select 0 else 1 >;
    A025123:= func< n | (&+[Floor(k*(3+Sqrt(5))/2)*A023533(n+2-k): k in [1..Floor((n+1)/2)]]) >;
    [A025123(n): n in [1..100]]; // G. C. Greubel, Sep 14 2022
    
  • Mathematica
    b[j_]:= b[j]= Sum[KroneckerDelta[j, Binomial[m+2,3]], {m,0,15}];
    A025123[n_]:= A025123[n]= Sum[Floor[(n-j+2)*GoldenRatio^2]*b[j], {j, Floor[(n+4)/2], n+1}];
    Table[A025123[n], {n,100}] (* G. C. Greubel, Sep 14 2022 *)
  • SageMath
    @CachedFunction
    def b(j): return sum(bool(j==binomial(m+2,3)) for m in (0..13))
    @CachedFunction
    def A025123(n): return sum(floor((n-j+2)*golden_ratio^2)*b(j) for j in (((n+4)//2)..n+1))
    [A025123(n) for n in (1..100)] # G. C. Greubel, Sep 14 2022

A184819 E.g.f.: A(x) = Sum_{n>=0} (-log(1-x))^[n*phi^2] / [n*phi^2]!, where [n*phi^2] = A001950(n), the upper Wythoff sequence, and phi = (1+sqrt(5))/2.

Original entry on oeis.org

1, 0, 1, 3, 11, 51, 289, 1940, 15056, 132579, 1305352, 14203398, 169179053, 2188695718, 30552880513, 457633893249, 7319707872140, 124497880667346, 2243512187621332, 42695546402663276, 855593102807351931
Offset: 0

Views

Author

Paul D. Hanna, Jan 22 2011

Keywords

Examples

			E.g.f.: A(x) = 1 + x^2/2! + 3*x^3/3! + 11*x^4/4! + 51*x^5/5! +...
The series expansion begins:
A(x) = 1 + log(1-x)^2/2! - log(1-x)^5/5! - log(1-x)^7/7! + log(1-x)^10/10! - log(1-x)^13/13! +...+ (-log(1-x))^A001950(n)/A001950(n)! +...
The complementary series begins:
A(x) = 1/(1-x) + log(1-x) + log(1-x)^3/3! - log(1-x)^4/4! - log(1-x)^6/6! - log(1-x)^8/8! + log(1-x)^9/9! +...+ -(-log(1-x))^A000201(n)/A000201(n)! +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(phi=(sqrt(5)+1)/2,A=1+x+x*O(x^n)); for(i=1, n,A=1+sum(k=1, n,(-log(1-x+x*O(x^n)))^floor(k*phi^2)/floor(k*phi^2)!+x*O(x^n))); n!*polcoeff(A, n)}

Formula

E.g.f.: A(x) = 1/(1-x) - Sum_{n>=1} (-log(1-x))^[n*phi] / [n*phi]!, where [n*phi] = A000201(n), the lower Wythoff sequence.
a(n) = n! - A184818(n) for n>0.

A247431 The largest integer m such that A001950(m) < A003231(n).

Original entry on oeis.org

1, 2, 3, 5, 6, 8, 9, 10, 12, 13, 14, 16, 17, 19, 20, 21, 23, 24, 25, 27, 28, 30, 31, 32, 34, 35, 37, 38, 39, 41, 42, 43, 45, 46, 48, 49, 50, 52, 53, 55, 56, 57, 59, 60, 61, 63, 64, 66, 67, 68, 70, 71, 72, 74, 75, 77, 78, 79, 81, 82, 84, 85, 86, 88, 89, 90, 92
Offset: 1

Views

Author

Eric M. Schmidt, Sep 17 2014

Keywords

Comments

This is the function named K in [Carlitz].

Crossrefs

Programs

  • PARI
    a31(n) = (5*n+sqrtint(5*n^2))\2; \\ A003231
    a50(n) = (sqrtint(n^2*5)+n*3)\2; \\ A001950
    a(n) = my(m=1, N=a31(n)); while(a50(m) < N, m++); m-1; \\ Michel Marcus, Nov 14 2023

A252055 Number of products A000201(i)*A001950(j) = n.

Original entry on oeis.org

0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 2, 1, 0, 2, 0, 2, 1, 1, 1, 1, 0, 1, 0, 3, 0, 2, 1, 1, 0, 2, 0, 1, 0, 1, 2, 2, 1, 2, 0, 2, 2, 0, 1, 1, 1, 1, 0, 2, 0, 3, 1, 1, 1, 1, 0, 6, 0, 1, 1, 1, 1, 1, 0, 1, 1, 3, 0, 1, 1, 1, 1, 1, 1, 3, 0, 4, 1, 0, 1, 3, 1, 2
Offset: 1

Views

Author

Clark Kimberling, Dec 23 2014

Keywords

Comments

A000201 and A001950 are the lower and upper Wythoff sequences, which partition the nonnegative integers.
Does this sequence include every nonnegative integer? What is the maximal number of consecutive 0's? What is the maximal number of consecutive 1's?

Examples

			a(312) counts these 7 products:  3*104, 4*78, 6*52, 8*39, 12*26, 24*13, 156*2
		

Crossrefs

Programs

  • Maple
    N:= 1000: # to get a(1) to a(N)
    A201:= [seq(floor(n*phi),n=1..N)]:
    A1950:= [seq(floor(n*phi^2),n=1..N)]:
    A:= Vector(N):
    for i from 1 to N do
      for j from 1 do
        m:= A201[i]*A1950[j];
        if m > N then break fi;
        A[m]:= A[m]+1;
       od
    od:
    convert(A,list); # Robert Israel, Dec 23 2014
  • Mathematica
    r = (1 + Sqrt[5])/2; s = r/(r - 1); t = Flatten[Table[Floor[r*j]*Floor[s*k], {j, 1, 300}, {k, 1, 300}]]; a[n_] := Count[t, n]; u = Table[a[n], {n, 1, 300}]

A342716 Frobenius number of the upper Wythoff sequence (A001950), starting with the n-th term.

Original entry on oeis.org

3, 16, 19, 42, 42, 42, 55, 58, 76, 79, 79, 110, 110, 110, 118, 121, 144, 144, 144, 155, 160, 173, 181, 181, 207, 207, 207, 220, 223, 254, 254, 254, 275, 275, 275, 283, 283, 309, 309, 309, 320, 325, 343, 346, 346, 377, 377, 377, 385, 388, 406, 409, 409, 422
Offset: 1

Views

Author

Jeffrey Shallit, Mar 19 2021

Keywords

Comments

The Frobenius number of a set S is the largest positive integer t such that t cannot be written as a nonnegative integer linear combination of the elements of S.
The sequence a(n) is "Fibonacci-synchronized"; there is an automaton that recognizes the Fibonacci representation of the pairs (n, a(n)) in parallel. This means specific values of a(n) are easily computed.

Crossrefs

Cf. A001950, A342715 (analog for the lower Wythoff numbers).

A374863 Obverse convolution A000201**A001950; see Comments.

Original entry on oeis.org

0, 2, 45, 840, 23040, 823680, 29729700, 1319205888, 60949324800, 3307060721664, 207247208103936, 13289727219664896, 959973192342388224, 77222763982780416000, 6318019834620558704640, 568402264910884213555200, 52282854778694683852800000
Offset: 0

Views

Author

Clark Kimberling, Aug 18 2024

Keywords

Comments

See A374848 for the definition of obverse convolution and a guide to related sequences.
A000201 and A001950 are assumed to start with a(0) = 0.

Crossrefs

Programs

  • Mathematica
    r = GoldenRatio;
    s[n_] := Floor[n*r]; t[n_] := Floor[n*r^2];
    u[n_] := Product[s[k] + t[n - k], {k, 0, n}]
    Table[u[n], {n, 0, 20}]

A374864 Obverse convolution (1)**A001950; see Comments.

Original entry on oeis.org

1, 3, 18, 144, 1584, 22176, 354816, 6741504, 141571584, 3397718016, 91738386432, 2660413206528, 85133222608896, 2979662791311360, 110247523278520320, 4409900931140812800, 185215839107914137600, 8334712759856136192000, 400066212473094537216000
Offset: 0

Views

Author

Clark Kimberling, Aug 18 2024

Keywords

Comments

See A374848 for the definition of obverse convolution and a guide to related sequences. a(n+1)/a(n) is an integer for n>=0, so (a(n)) is a divisibility sequence.

Crossrefs

Programs

  • Mathematica
    r = GoldenRatio;
    s[n_] := 1; t[n_] := Floor[n*r^2];
    u[n_] := Product[s[k] + t[n - k], {k, 0, n}]
    Table[u[n], {n, 0, 20}]

Formula

a(n) = Product_{k=0..n} A026352(k).

A022879 The number of numbers [ [ ix ]jx ] that equal n, where i >= 1, j >= 1 and x=(1+sqrt(5))/2. a(n)=0 iff n is in Beatty sequence A001950.

Original entry on oeis.org

1, 0, 1, 2, 0, 2, 0, 1, 3, 0, 1, 3, 0, 3, 0, 1, 2, 0, 5, 0, 1, 2, 0, 2, 4, 0, 2, 0, 4, 2, 0, 2, 3, 0, 3, 0, 1, 7, 0, 2, 0, 1, 4, 0, 3, 2, 0, 4, 0, 1, 5, 0, 4, 0, 2, 2, 0, 6, 2, 0, 3, 0, 2, 4, 0, 1, 6, 0, 2, 0, 4, 4, 0, 2, 0, 1, 9, 0, 1, 3, 0, 4, 0, 2, 2, 0, 5, 3, 0, 5
Offset: 1

Views

Author

Keywords

A023542 Convolution of natural numbers with Beatty sequence for tau^2 A001950.

Original entry on oeis.org

2, 9, 23, 47, 84, 136, 206, 296, 409, 548, 715, 913, 1145, 1413, 1720, 2068, 2460, 2899, 3387, 3927, 4521, 5172, 5883, 6656, 7494, 8400, 9376, 10425, 11549, 12751, 14034, 15400, 16852, 18393, 20025, 21751, 23573, 25494, 27517, 29644
Offset: 1

Views

Author

Keywords

A023564 Convolution of A023531 and A001950.

Original entry on oeis.org

0, 2, 5, 7, 12, 18, 22, 28, 35, 43, 51, 58, 67, 77, 87, 97, 108, 119, 129, 141, 155, 167, 181, 194, 206, 221, 235, 251, 266, 282, 299, 314, 329, 345, 363, 382, 399, 418, 438, 454, 473, 491, 509, 531, 551, 571, 594, 614, 635, 655, 676, 699, 719
Offset: 1

Views

Author

Keywords

Previous Showing 41-50 of 259 results. Next