A001994 Expansion of 1/((1-x^2)*(1-x^4)^2*(1-x^6)*(1-x^8)*(1-x^10)) (even powers only).
1, 1, 3, 4, 8, 11, 18, 24, 36, 47, 66, 84, 113, 141, 183, 225, 284, 344, 425, 508, 617, 729, 872, 1020, 1205, 1397, 1632, 1877, 2172, 2480, 2846, 3228, 3677, 4146, 4691, 5261, 5917, 6603, 7386, 8205, 9133, 10103, 11195, 12336, 13613, 14947, 16431, 17981, 19697
Offset: 0
References
- A. Cayley, Calculation of the minimum N.G.F. of the binary seventhic, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 10, p. 408-419.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..1000
- A. Cayley, Calculation of the minimum N.G.F. of the binary seventhic, Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 10, p. 408-419. [Annotated scanned copy]
- Index entries for linear recurrences with constant coefficients, signature (9, -33, 63, -66, 36, -8).
Crossrefs
Cf. A001996.
Programs
-
Mathematica
nn = 202; t = CoefficientList[Series[1/((1 - x^2)*(1 - x^4)^2*(1 - x^6)*(1 - x^8)*(1 - x^10)), {x, 0, nn}], x]; t = Take[t, {1, nn, 2}]
Extensions
More terms from James Sellers, Feb 09 2000
Comments