A166976
Array of A002450 in the top row and higher-order differences in subsequent rows, read by antidiagonals.
Original entry on oeis.org
0, 1, 1, 3, 4, 5, 9, 12, 16, 21, 27, 36, 48, 64, 85, 81, 108, 144, 192, 256, 341, 243, 324, 432, 576, 768, 1024, 1365, 729, 972, 1296, 1728, 2304, 3072, 4096, 5461, 2187, 2916, 3888, 5184, 6912, 9216, 12288, 16384, 21845, 6561
Offset: 0
The array starts:
0, 1, 5, 21, 85, 341,1365,5461,21845,87381,349525, A002450
1, 4, 16, 64, 256,1024,4096,16384,65536,262144,1048576, A000302
3, 12, 48, 192, 768,3072,12288,49152,196608,786432, A002001, A164346, A110594
9, 36, 144, 576,2304,9216,36864,147456 A002063, A055841
-
A002450 := proc(n) (4^n-1)/3 ; end proc:
A166976 := proc(n,k) option remember; if n = 0 then A002450(k) else procname(n-1,k+1)-procname(n-1,k) ; end if; end proc: # R. J. Mathar, Jul 02 2011
A196512
Expansion of g.f. (1-9*x)/(1-28*x).
Original entry on oeis.org
1, 19, 532, 14896, 417088, 11678464, 326996992, 9155915776, 256365641728, 7178237968384, 200990663114752, 5627738567213056, 157576679881965568, 4412147036695035904, 123540117027461005312, 3459123276768908148736, 96855451749529428164608, 2711952648986823988609024
Offset: 0
A196676
Expansion of g.f. (1-8*x)/(1-25*x).
Original entry on oeis.org
1, 17, 425, 10625, 265625, 6640625, 166015625, 4150390625, 103759765625, 2593994140625, 64849853515625, 1621246337890625, 40531158447265625, 1013278961181640625, 25331974029541015625, 633299350738525390625, 15832483768463134765625, 395812094211578369140625, 9895302355289459228515625
Offset: 0
-
CoefficientList[Series[(1-8x)/(1-25x),{x,0,30}],x] (* Harvey P. Dale, Apr 29 2014 *)
A337218
The positive integers uniquely represented by the ternary form x^2 + 2*y^2 + 2*z^2, with integers x <= 0, and 0 <= y <= z.
Original entry on oeis.org
1, 2, 3, 5, 6, 10, 12, 13, 14, 21, 22, 30, 37, 42, 46, 48, 58, 70, 78, 93, 133, 142, 190, 192, 253, 768, 3072, 12288, 49152, 196608, 786432, 3145728, 12582912, 50331648, 201326592, 805306368, 3221225472, 12884901888
Offset: 1
4 is not a member because (x, y, z) = (0, 1, 1) and (2, 0, 0) give both 4.
3 is a member with one solution (1, 0, 1).
5 is a member with one solutuion (1, 1, 1).
7 is not a member because there is no solution.
11 is not a member because there are two solutions (1, 1, 2) and (3, 0, 1).
- Irving Kaplansky, Integers Uniquely Represented by Certain Ternary Forms, in "The Mathematics of Paul Erdős I", Ronald. L. Graham and Jaroslav Nešetřil (Eds.), Springer, 1997, pp. 86 - 94.
A232535
Triangle T(n,k), 0 <= k <= n, read by rows defined by: T(n,k) = (binomial(2*n,2*k) + binomial(2*n+1,2*k))/2.
Original entry on oeis.org
1, 1, 2, 1, 8, 3, 1, 18, 25, 4, 1, 32, 98, 56, 5, 1, 50, 270, 336, 105, 6, 1, 72, 605, 1320, 891, 176, 7, 1, 98, 1183, 4004, 4719, 2002, 273, 8, 1, 128, 2100, 10192, 18590, 13728, 4004, 400, 9, 1, 162, 3468, 22848, 59670, 68068, 34476, 7344, 561, 10, 1, 200, 5415
Offset: 0
Triangle begins:
1
1, 2
1, 8, 3
1, 18, 25, 4
1, 32, 98, 56, 5
1, 50, 270, 336, 105, 6
1, 72, 605, 1320, 891, 176, 7
1, 98, 1183, 4004, 4719, 2002, 273, 8
1, 128, 2100, 10192, 18590, 13728, 4004, 400, 9
-
T := (n,k) -> binomial(2*n, 2*k)*(2*n+1-k)/(2*n+1-2*k);
seq(seq(T(n,k), k=0..n), n=0..9); # Peter Luschny, Nov 26 2013
-
Flatten[Table[(Binomial[2n,2k]+Binomial[2n+1,2k])/2,{n,0,10},{k,0,n}]] (* Harvey P. Dale, Jul 05 2015 *)
A356036
Triangle read by rows, giving in the first column the powers of 3 (A000244) and in the next columns 4/3 times the previous row entry.
Original entry on oeis.org
1, 3, 4, 9, 12, 16, 27, 36, 48, 64, 81, 108, 144, 192, 256, 243, 324, 432, 576, 768, 1024, 729, 972, 1296, 1728, 2304, 3072, 4096, 2187, 2916, 3888, 5184, 6912, 9216, 12288, 16384, 6561, 8748, 11664, 15552, 20736, 27648, 36864, 49152, 65536, 19683, 26244, 34992, 46656, 62208, 82944, 110592, 147456, 196608, 262144
Offset: 0
The triangle T begins:
n\k 0 1 2 3 4 5 6 7 8 9 ...
0: 1
1: 3 4
2: 9 12 16
3: 27 36 48 64
4: 81 108 144 192 256
5: 243 324 432 576 768 1024
6: 729 972 1296 1728 2304 3072 4096
7: 2187 2916 3888 5184 6912 9216 12288 16384
8: 6561 8748 11664 15552 20736 27648 36864 49152 65536
9: 19683 26244 34992 46656 62208 82944 110592 147456 196608 262144
...
- Thomas Sonar, 3000 Jahre Analysis, 2. Auflage, Springer Spektrum, 2016, p.94, Abb. 3.1.2 und Abb. 3.1.3.
-
T[n_, k_] := 3^(n - k) * 4^k; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Amiram Eldar, Aug 05 2022 *)
Comments