cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 34 results. Next

A124790 A generalized Motzkin triangle.

Original entry on oeis.org

1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 3, 4, 3, 2, 1, 0, 6, 9, 6, 5, 2, 1, 0, 15, 21, 15, 12, 6, 3, 1, 0, 36, 51, 36, 30, 15, 9, 3, 1, 0, 91, 127, 91, 76, 40, 25, 10, 4, 1, 0, 232, 323, 232, 196, 105, 69, 29, 14, 4, 1
Offset: 0

Views

Author

Paul Barry, Nov 07 2006

Keywords

Comments

Columns include A005043, A001006, A002026. Row sums are A124791. For even k, column k has g.f. x^k*M(x)^(k/2), where M(x)=2/(1-x+sqrt(1-2x-3x^2)) is the g.f. of A001006. For odd k, column k has g.f. x^k*S(x)*M(x)^floor(k/2), S(x)=(1+x-sqrt(1-2x-3x^2))/(2x(1+x)), the g.f. of A005043.

Examples

			Triangle begins
1,
0, 1,
0, 0, 1,
0, 1, 1, 1,
0, 1, 2, 1, 1,
0, 3, 4, 3, 2, 1,
0, 6, 9, 6, 5, 2, 1,
0, 15, 21, 15, 12, 6, 3, 1,
0, 36, 51, 36, 30, 15, 9, 3, 1,
0, 91, 127, 91, 76, 40, 25, 10, 4, 1,
0, 232, 323, 232, 196, 105, 69, 29, 14, 4, 1
Production matrix begins
0, 1,
0, 0, 1,
0, 1, 1, 1,
0, 0, 0, 0, 1,
0, 1, 1, 1, 1, 1,
0, 0, 0, 0, 0, 0, 1,
0, 1, 1, 1, 1, 1, 1, 1,
0, 0, 0, 0, 0, 0, 0, 0, 1,
0, 1, 1, 1, 1, 1, 1, 1, 1, 1
- _Paul Barry_, Apr 07 2011
		

Formula

Triangle is the product of A124788 and A124305, that is, it is the product of the expansion of (1+x*y)/(1-x^2*y^2-x^3*y^2) and the inverse of the Riordan array (1,x(1-x^2)).

A366646 G.f. A(x) satisfies A(x) = 1 + (x * A(x) / (1 - x))^4.

Original entry on oeis.org

1, 0, 0, 0, 1, 4, 10, 20, 39, 88, 228, 600, 1507, 3652, 8866, 22100, 56365, 144656, 369784, 942480, 2408934, 6196280, 16026652, 41571640, 107959654, 280708560, 731349400, 1910098320, 4999759830, 13109582376, 34421585844, 90500370760, 238272324682
Offset: 0

Views

Author

Seiichi Manyama, Oct 15 2023

Keywords

Crossrefs

Partial sums give A127902.

Programs

  • PARI
    a(n) = sum(k=0, n\4, binomial(n-1, n-4*k)*binomial(4*k, k)/(3*k+1));

Formula

a(n) = Sum_{k=0..floor(n/4)} binomial(n-1,n-4*k) * binomial(4*k,k) / (3*k+1).

A114581 Triangle read by rows: T(n,k) is the number of Motzkin paths of length n having k UDH's starting at level 0 (U=(1,1),H=(1,0),D=(1,-1)).

Original entry on oeis.org

1, 1, 2, 3, 1, 7, 2, 16, 5, 40, 10, 1, 100, 24, 3, 256, 58, 9, 663, 149, 22, 1, 1741, 386, 57, 4, 4620, 1017, 147, 14, 12376, 2702, 392, 40, 1, 33416, 7248, 1053, 113, 5, 90853, 19590, 2859, 312, 20, 248515, 53318, 7803, 870, 65, 1, 683429, 145984, 21420, 2428
Offset: 0

Views

Author

Emeric Deutsch, Dec 09 2005

Keywords

Comments

Row n contains 1+floor(n/3) terms. Row sums are the Motzkin numbers (A001006). Column 0 yields A114582. Sum(k*T(n,k),k=0..floor(n/3))=A002026(n-2).

Examples

			T(7,2)=3 because we have (UDH)(UDH)H, H(UDH)(UDH) and (UDH)H(UDH), where U=(1,1),H=(1,0),D=(1,-1) (the UDH's starting at level 0 are shown between parentheses).
Triangle starts:
1;
1;
2;
3,1;
7,2;
16,5;
40,10,1;
		

Crossrefs

Programs

  • Maple
    G:=2/(1-z-2*t*z^3+2*z^3+sqrt(1-2*z-3*z^2)): Gser:=simplify(series(G,z=0,21)): P[0]:=1: for n from 1 to 17 do P[n]:=coeff(Gser,z^n) od: for n from 0 to 17 do seq(coeff(t*P[n],t^j),j=1..1+floor(n/3)) od; # yields sequence in triangular form

Formula

G.f.=2/[1-z-2tz^3+2z^3+sqrt(1-2z-3z^2)].

A349186 G.f. A(x) satisfies: A(x) = (1 - x) / (1 - 2 * x - x^2 - x^3 * A(x)).

Original entry on oeis.org

1, 1, 3, 8, 21, 57, 157, 438, 1237, 3530, 10165, 29505, 86243, 253654, 750157, 2229469, 6655369, 19946979, 60000443, 181076982, 548125929, 1663786344, 5063133335, 15444046031, 47211447131, 144614092732, 443803262627, 1364370846941, 4201333752921, 12957168021207
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 09 2021

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 29; A[] = 0; Do[A[x] = (1 - x)/(1 - 2 x - x^2 - x^3 A[x]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
    nmax = 29; CoefficientList[Series[(1 - 2 x - x^2 - Sqrt[1 - 4 x + 2 x^2 + 5 x^4])/(2 x^3), {x, 0, nmax}], x]
    a[0] = a[1] = 1; a[n_] := a[n] = 2 a[n - 1] + a[n - 2] + Sum[a[k] a[n - k - 3], {k, 0, n - 3}]; Table[a[n], {n, 0, 29}]

Formula

G.f.: (1 - 2*x - x^2 - sqrt(1 - 4*x + 2*x^2 + 5*x^4)) / (2*x^3).
a(0) = a(1) = 1; a(n) = 2 * a(n-1) + a(n-2) + Sum_{k=0..n-3} a(k) * a(n-k-3).

A356611 Number of SAWs spanning a rhomboidal domain of the hexagonal lattice.

Original entry on oeis.org

2, 50, 2256, 292006, 124394172, 182189852062, 937116505296162, 17167376550995687961, 1130911800993488803731078, 269650395624478266477331223678, 233772496350603982679550385266064014, 739330863241806743025423160490836132227125, 8551000409049037000098287028025432585191736309022
Offset: 1

Views

Author

Vaclav Kotesovec, following a suggestion from Anthony Guttmann, Aug 16 2022

Keywords

Crossrefs

A356612 Number of SAPs crossing a rhomboidal domain of the hexagonal lattice.

Original entry on oeis.org

1, 3, 48, 3126, 775842, 727870836, 2575728525240, 34244061451559094, 1703999058661009145746, 316543880488539946466963896, 219157996022284922702859434801868, 564858713948847373563461482383973674774, 5415142061627863782256892670635702203299498106
Offset: 1

Views

Author

Vaclav Kotesovec, following a suggestion from Anthony Guttmann, Aug 16 2022

Keywords

Crossrefs

A356613 Number of SAWs crossing a triangular domain of the hexagonal lattice.

Original entry on oeis.org

2, 7, 44, 515, 11500, 493704, 40751496, 6463642330, 1970190022696, 1154437344815284, 1300686960810345198, 2818300749120970598426, 11745284697899678209887246, 94153940687296424300453605522, 1451915619132744566900848537333082, 43072062058620235613855525243039798546
Offset: 1

Views

Author

Vaclav Kotesovec, following a suggestion from Anthony Guttmann, Aug 16 2022

Keywords

Crossrefs

A356614 Number of SAWs crossing a triangular domain of the hexagonal lattice and including the top vertex.

Original entry on oeis.org

1, 3, 18, 210, 4716, 203130, 16781528, 2661898722, 811337884328, 475395297020430, 535618774376758222, 1160567857061063474508, 4836675324919658534327348, 38772333263059858336182467950, 597894854584620490267288203881970, 17736956492510173648327596231133813426
Offset: 1

Views

Author

Vaclav Kotesovec, following a suggestion from Anthony Guttmann, Aug 16 2022

Keywords

Crossrefs

A356615 Number of SAPs crossing a triangular domain of the hexagonal lattice.

Original entry on oeis.org

1, 2, 9, 85, 1605, 59896, 4392639, 629739138, 175745776816, 95207239875508, 99934927799315359, 202993550188918062298, 797200289814680588454420, 6048794511036987586252009778, 88623124229469033988344357343229, 2506168305598107863294101582119745559
Offset: 1

Views

Author

Vaclav Kotesovec, following a suggestion from Anthony Guttmann, Aug 16 2022

Keywords

Crossrefs

A361229 G.f. A(x) satisfies A(x) = 1 + x^4 * (A(x) / (1 - x))^2.

Original entry on oeis.org

1, 0, 0, 0, 1, 2, 3, 4, 7, 14, 27, 48, 84, 152, 284, 532, 987, 1826, 3401, 6384, 12024, 22656, 42728, 80780, 153151, 290970, 553601, 1054688, 2012373, 3845646, 7359345, 14100692, 27048061, 51941850, 99855389, 192163904, 370159216, 713672568, 1377168108, 2659729380
Offset: 0

Views

Author

Seiichi Manyama, Oct 15 2023

Keywords

Crossrefs

Partial sums give A023426.

Programs

  • Maple
    A361229 := proc(n)
        add(binomial(n-2*k-1,n-4*k) * binomial(2*k,k) / (k+1),k=0..floor(n/4)) ;
    end proc:
    seq(A361229(n),n=0..70) ; # R. J. Mathar, Dec 04 2023
  • PARI
    a(n) = sum(k=0, n\4, binomial(n-2*k-1, n-4*k)*binomial(2*k, k)/(k+1));

Formula

G.f.: A(x) = 2*(1-x) / (1-x+sqrt((1-x)^2-4*x^4)).
a(n) = Sum_{k=0..floor(n/4)} binomial(n-2*k-1,n-4*k) * binomial(2*k,k) / (k+1).
D-finite with recurrence (n+4)*a(n) +(-3*n-7)*a(n-1) +(3*n+2)*a(n-2) +(-n+1)*a(n-3) +4*(-n+2)*a(n-4) +4*(n-4)*a(n-5)=0. - R. J. Mathar, Dec 04 2023
Previous Showing 21-30 of 34 results. Next