A306472
a(n) = 37*27^n.
Original entry on oeis.org
37, 999, 26973, 728271, 19663317, 530909559, 14334558093, 387033068511, 10449892849797, 282147106944519, 7617971887502013, 205685240962554351, 5553501505988967477, 149944540661702121879, 4048502597865957290733, 109309570142380846849791, 2951358393844282864944357
Offset: 0
For a(0) = 37 and A002042(0) = 7, 37^2 + 3 = 1372 = 4*7^3.
-
List([0..20], n->37*27^n);
-
[37*27^n: n in [0..20]];
-
a:=n->37*27^n: seq(a(n), n=0..20);
-
37*27^Range[0,20]
-
a(n) = 37*27^n;
A308124
a(n) = (2 + 7*4^n)/3.
Original entry on oeis.org
3, 10, 38, 150, 598, 2390, 9558, 38230, 152918, 611670, 2446678, 9786710, 39146838, 156587350, 626349398, 2505397590, 10021590358, 40086361430, 160345445718, 641381782870, 2565527131478, 10262108525910, 41048434103638, 164193736414550, 656774945658198, 2627099782632790
Offset: 0
A383414
Array read by ascending antidiagonals: A(n,k) = 4^n*(8*k + 7).
Original entry on oeis.org
7, 28, 15, 112, 60, 23, 448, 240, 92, 31, 1792, 960, 368, 124, 39, 7168, 3840, 1472, 496, 156, 47, 28672, 15360, 5888, 1984, 624, 188, 55, 114688, 61440, 23552, 7936, 2496, 752, 220, 63, 458752, 245760, 94208, 31744, 9984, 3008, 880, 252, 71, 1835008, 983040, 376832, 126976, 39936, 12032, 3520, 1008, 284, 79
Offset: 0
The array begins as:
7, 15, 23, 31, 39, 47, ...
28, 60, 92, 124, 156, 188, ...
112, 240, 368, 496, 624, 752, ...
448, 960, 1472, 1984, 2496, 3008, ...
1792, 3840, 5888, 7936, 9984, 12032, ...
7168, 15360, 23552, 31744, 39936, 48128, ...
28672, 61440, 94208, 126976, 159744, 192512, ...
...
- G. H. Hardy, Ramanujan: twelve lectures on subjects suggested by his life and work, Cambridge, University Press, 1940, p. 12.
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 246-247.
-
A[n_,k_]:=4^n(8k+7); Table[A[n-k,k],{n,0,9},{k,0,n}]//Flatten
Comments