cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 165 results. Next

A378976 Decimal expansion of the midradius of a triakis icosahedron with unit shorter edge length.

Original entry on oeis.org

1, 3, 9, 4, 4, 2, 7, 1, 9, 0, 9, 9, 9, 9, 1, 5, 8, 7, 8, 5, 6, 3, 6, 6, 9, 4, 6, 7, 4, 9, 2, 5, 1, 0, 4, 9, 4, 1, 7, 6, 2, 4, 7, 3, 4, 3, 8, 4, 4, 6, 1, 0, 2, 8, 9, 7, 0, 8, 3, 5, 8, 8, 9, 8, 1, 6, 4, 2, 0, 8, 3, 7, 0, 2, 5, 5, 1, 2, 1, 9, 5, 9, 7, 6, 5, 7, 6, 5, 7, 6
Offset: 1

Views

Author

Paolo Xausa, Dec 14 2024

Keywords

Comments

The triakis icosahedron is the dual polyhedron of the truncated dodecahedron.

Examples

			1.3944271909999158785636694674925104941762473438446...
		

Crossrefs

Cf. A378973 (surface area), A378974 (volume), A378975 (inradius), A378977 (dihedral angle).
Cf. A377697 (midradius of a truncated dodecahedron with unit edge length).

Programs

  • Mathematica
    First[RealDigits[1/2 + 2/Sqrt[5], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["TriakisIcosahedron", "Midradius"], 10, 100]]

Formula

Equals 1/2 + 2/sqrt(5) = 1/2 + 2/A002163.
Equals (A249600 + 13)/10 = (A010532 + 5)/10.

A378977 Decimal expansion of the dihedral angle, in radians, between any two adjacent faces in a triakis icosahedron.

Original entry on oeis.org

2, 8, 0, 3, 2, 1, 7, 8, 5, 6, 0, 8, 4, 8, 0, 5, 9, 6, 2, 1, 0, 3, 4, 4, 9, 3, 2, 6, 4, 8, 7, 7, 2, 5, 3, 2, 8, 1, 1, 5, 2, 6, 5, 9, 8, 8, 0, 3, 5, 4, 0, 1, 2, 6, 9, 8, 4, 7, 0, 1, 7, 0, 6, 0, 5, 1, 6, 8, 7, 6, 1, 6, 4, 9, 4, 7, 8, 1, 9, 2, 7, 5, 1, 4, 3, 8, 7, 6, 5, 3
Offset: 1

Views

Author

Paolo Xausa, Dec 14 2024

Keywords

Comments

The triakis icosahedron is the dual polyhedron of the truncated dodecahedron.

Examples

			2.8032178560848059621034493264877253281152659880354...
		

Crossrefs

Cf. A378973 (surface area), A378974 (volume), A378975 (inradius), A378976 (midradius).
Cf. A137218 and A344075 (dihedral angles of a truncated dodecahedron).
Cf. A002163.

Programs

  • Mathematica
    First[RealDigits[ArcCos[-3*(8 + 5*Sqrt[5])/61], 10, 100]] (* or *)
    First[RealDigits[First[PolyhedronData["TriakisIcosahedron", "DihedralAngles"]], 10, 100]]

Formula

Equals arccos(-3*(8 + 5*sqrt(5))/61) = arccos(-3*(8 + 5*A002163)/61).

A379132 Decimal expansion of the surface area of a pentakis dodecahedron with unit shorter edge length.

Original entry on oeis.org

2, 7, 9, 3, 5, 2, 4, 9, 6, 0, 0, 7, 0, 0, 7, 9, 3, 1, 0, 5, 8, 1, 0, 1, 9, 1, 2, 7, 9, 9, 6, 3, 6, 8, 0, 7, 0, 5, 2, 5, 7, 7, 8, 6, 1, 0, 9, 0, 7, 3, 6, 2, 6, 2, 5, 3, 5, 8, 6, 5, 9, 8, 4, 3, 0, 7, 7, 6, 1, 1, 3, 9, 5, 8, 0, 3, 1, 2, 7, 3, 3, 1, 2, 7, 0, 1, 6, 9, 7, 5
Offset: 2

Views

Author

Paolo Xausa, Dec 16 2024

Keywords

Comments

The pentakis dodecahedron is the dual polyhedron of the truncated icosahedron.

Examples

			27.93524960070079310581019127996368070525778610907...
		

Crossrefs

Cf. A379133 (volume), A379134 (inradius), A379135 (midradius), A379136 (dihedral angle).
Cf. A377750 (surface area of a truncated icosahedron with unit edge length).
Cf. A002163.

Programs

  • Mathematica
    First[RealDigits[5/3*Sqrt[(421 + 63*Sqrt[5])/2], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["PentakisDodecahedron", "SurfaceArea"], 10, 100]]
  • PARI
    sqrt((421 + 63*sqrt(5))/2)*5/3 \\ Charles R Greathouse IV, Feb 05 2025

Formula

Equals (5/3)*sqrt((421 + 63*sqrt(5))/2) = (5/3)*sqrt((421 + 63*A002163)/2).

A379133 Decimal expansion of the volume of a pentakis dodecahedron with unit shorter edge length.

Original entry on oeis.org

1, 3, 4, 5, 8, 5, 6, 9, 3, 6, 6, 3, 1, 8, 7, 1, 4, 2, 2, 3, 6, 4, 2, 9, 6, 4, 1, 2, 7, 5, 3, 9, 1, 5, 3, 5, 9, 5, 2, 7, 9, 9, 2, 4, 8, 5, 9, 7, 6, 2, 2, 4, 2, 0, 9, 8, 1, 6, 2, 8, 3, 7, 6, 5, 7, 6, 7, 5, 4, 1, 9, 8, 8, 0, 6, 8, 6, 8, 2, 2, 5, 6, 7, 4, 1, 1, 1, 6, 1, 1
Offset: 2

Views

Author

Paolo Xausa, Dec 16 2024

Keywords

Comments

The pentakis dodecahedron is the dual polyhedron of the truncated icosahedron.

Examples

			13.458569366318714223642964127539153595279924859762...
		

Crossrefs

Cf. A379132 (surface area), A379134 (inradius), A379135 (midradius), A379136 (dihedral angle).
Cf. A377751 (volume of a truncated icosahedron with unit edge length).
Cf. A002163.

Programs

  • Mathematica
    First[RealDigits[5/36*(41 + 25*Sqrt[5]), 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["PentakisDodecahedron", "Volume"], 10, 100]]
  • PARI
    (41 + 25*sqrt(5))*5/36 \\ Charles R Greathouse IV, Feb 05 2025

Formula

Equals (5/36)*(41 + 25*sqrt(5)) = (5/36)*(41 + 25*A002163).

A379387 Decimal expansion of the inradius of a deltoidal hexecontahedron with unit shorter edge length.

Original entry on oeis.org

2, 6, 3, 4, 7, 9, 7, 6, 8, 8, 2, 2, 2, 4, 7, 1, 3, 6, 5, 0, 1, 3, 7, 9, 3, 3, 3, 7, 4, 7, 5, 9, 8, 0, 2, 6, 5, 5, 7, 0, 2, 7, 8, 7, 1, 5, 8, 8, 4, 4, 6, 5, 9, 1, 1, 8, 4, 4, 2, 4, 5, 0, 9, 9, 4, 1, 6, 2, 3, 4, 6, 6, 9, 6, 9, 0, 0, 8, 7, 6, 3, 3, 7, 1, 4, 5, 2, 5, 7, 7
Offset: 1

Views

Author

Paolo Xausa, Dec 23 2024

Keywords

Comments

The deltoidal hexecontahedron is the dual polyhedron of the (small) rhombicosidodecahedron.

Examples

			2.634797688222471365013793337475980265570278715884...
		

Crossrefs

Cf. A379385 (surface area), A379386 (volume), A379388 (midradius), A379389 (dihedral angle).
Cf. A002163.

Programs

  • Mathematica
    First[RealDigits[Root[820*#^4 - 5710*#^2 + 121 &, 4], 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["DeltoidalHexecontahedron", "Inradius"], 10, 100]]

Formula

Equals 11*sqrt((135 + 59*sqrt(5))/205)/(7 - sqrt(5)) = 11*sqrt((135 + 59*A002163)/205)/(7 - A002163).
Equals the largest root of 820*x^4 - 5710*x^2 + 121.

A379389 Decimal expansion of the dihedral angle, in radians, between any two adjacent faces in a deltoidal hexecontahedron.

Original entry on oeis.org

2, 6, 8, 9, 9, 2, 5, 2, 3, 4, 2, 0, 6, 5, 7, 6, 3, 4, 0, 0, 7, 2, 8, 8, 1, 5, 1, 4, 6, 3, 1, 6, 1, 6, 8, 3, 0, 0, 3, 5, 3, 3, 0, 3, 7, 2, 4, 9, 2, 1, 1, 4, 1, 4, 3, 1, 6, 0, 1, 1, 4, 5, 0, 7, 8, 1, 7, 2, 8, 3, 1, 9, 1, 3, 5, 1, 4, 1, 4, 4, 0, 1, 8, 9, 8, 9, 6, 6, 3, 8
Offset: 1

Views

Author

Paolo Xausa, Dec 23 2024

Keywords

Comments

The deltoidal hexecontahedron is the dual polyhedron of the (small) rhombicosidodecahedron.

Examples

			2.6899252342065763400728815146316168300353303724921...
		

Crossrefs

Cf. A379385 (surface area), A379386 (volume), A379387 (inradius), A379388 (midradius).
Cf. A377995 and A377996 (dihedral angles of a (small) rhombicosidodecahedron).
Cf. A002163.

Programs

  • Mathematica
    First[RealDigits[ArcCos[-(19 + 8*Sqrt[5])/41], 10, 100]] (* or *)
    First[RealDigits[First[PolyhedronData["DeltoidalHexecontahedron", "DihedralAngles"]], 10, 100]]

Formula

Equals arccos(-(19 + 8*sqrt(5))/41) = arccos(-(19 + 8*A002163)/41).

A384138 Decimal expansion of the volume of an elongated pentagonal pyramid with unit edge.

Original entry on oeis.org

2, 0, 2, 1, 9, 8, 0, 2, 3, 2, 9, 8, 4, 7, 9, 1, 4, 9, 3, 4, 4, 2, 7, 2, 7, 5, 4, 6, 9, 1, 9, 0, 7, 9, 4, 4, 2, 5, 5, 0, 7, 3, 3, 2, 6, 8, 3, 2, 7, 3, 4, 5, 2, 3, 4, 3, 8, 5, 0, 4, 8, 7, 5, 8, 9, 1, 5, 9, 7, 4, 0, 3, 0, 7, 7, 7, 2, 0, 8, 1, 0, 2, 1, 4, 1, 3, 7, 5, 1, 7
Offset: 1

Views

Author

Paolo Xausa, May 20 2025

Keywords

Comments

The elongated pentagonal pyramid is Johnson solid J_9.

Examples

			2.0219802329847914934427275469190794425507332683273...
		

Crossrefs

Cf. A179553 (surface area - 5).

Programs

  • Mathematica
    First[RealDigits[(5 + Sqrt[5] + 6*Sqrt[25 + 10*Sqrt[5]])/24, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J9", "Volume"], 10, 100]]

Formula

Equals (5 + sqrt(5) + 6*sqrt(25 + 10*sqrt(5)))/24 = (5 + A002163 + 6*sqrt(25 + 10*A002163))/24.
Equals the largest root of 20736*x^4 - 17280*x^3 - 59760*x^2 + 15600*x + 9025.

A384140 Decimal expansion of the volume of an elongated pentagonal bipyramid with unit edge.

Original entry on oeis.org

2, 3, 2, 3, 4, 8, 3, 0, 6, 5, 3, 8, 0, 6, 1, 6, 0, 6, 4, 1, 2, 6, 4, 4, 3, 1, 1, 6, 4, 4, 9, 5, 4, 9, 2, 8, 5, 6, 9, 4, 0, 9, 2, 3, 6, 6, 6, 4, 4, 4, 9, 2, 1, 3, 9, 5, 6, 3, 0, 0, 2, 8, 1, 0, 8, 0, 8, 0, 7, 9, 0, 6, 9, 3, 4, 5, 4, 4, 9, 9, 7, 2, 9, 5, 0, 3, 0, 9, 1, 0
Offset: 1

Views

Author

Paolo Xausa, May 20 2025

Keywords

Comments

The elongated pentagonal bipyramid is Johnson solid J_16.

Examples

			2.32348306538061606412644311644954928569409236664...
		

Crossrefs

Cf. A384141 (surface area).

Programs

  • Mathematica
    First[RealDigits[(5 + Sqrt[5] + 3*Sqrt[25 + 10*Sqrt[5]])/12, 10, 100]] (* or *)
    First[RealDigits[PolyhedronData["J16", "Volume"], 10, 100]]

Formula

Equals (5 + sqrt(5) + 3*sqrt(25 + 10*sqrt(5)))/12 = (5 + A002163 + 3*sqrt(25 + 10*A002163))/12.
Equals the largest root of 20736*x^4 - 34560*x^3 - 44640*x^2 + 27600*x + 6025.

A138367 Count of post-period decimal digits up to which the rounded n-th convergent to sqrt(5) agrees with the exact value.

Original entry on oeis.org

0, 2, 4, 5, 6, 7, 8, 10, 8, 12, 14, 14, 16, 18, 19, 20, 21, 23, 24, 24, 26, 28, 29, 30, 31, 33, 33, 34, 35, 37, 39, 40, 41, 42, 44, 44, 46, 47, 48, 49, 51, 53, 53, 55, 56, 57, 59, 60, 60, 61, 64, 65, 66, 68, 69, 70, 72, 73, 74, 75, 76, 77, 79, 80, 81, 83, 83, 85, 85, 88, 89, 90, 91, 92
Offset: 1

Views

Author

Artur Jasinski, Mar 17 2008

Keywords

Comments

This is a measure of the quality of the n-th convergent to A002163 if the convergent and the exact value are compared rounded to an increasing number of digits.
The sequence of rounded values of sqrt(5) is 2, 2.2, 2.24, 2.236, 2.2361, 2.23607, 2.236068, 2.2360680 etc, and the n-th convergent (provided by A001077 and A001076) is to be represented by its equivalent sequence.
a(n) represents the maximum number of post-period digits of the two sequences if compared at the same level of rounding. Counting only post-period digits (which is one less than the full number of decimal digits) is just a convention taken from A084407.

Examples

			For n=3, the 3rd convergent is 161/72 = 2.236111111..., with a sequence of rounded representations 2, 2.2, 2.24, 2.236, 2.2361, 2.23611, 2.236111, 2.2361111 etc.
Rounded to 1, 2, 3, or 4 post-period decimal digits, this is the same as the rounded version of the exact sqrt(5), but disagrees if both are rounded to 5 decimal digits, where 2.23607 <> 2.23611.
So a(3) = 4 (digits), the maximum rounding level of agreement.
		

Crossrefs

Extensions

Definition and values replaced as defined via continued fractions by R. J. Mathar, Oct 01 2009

A379136 Decimal expansion of the dihedral angle, in radians, between any two adjacent faces in a pentakis dodecahedron.

Original entry on oeis.org

2, 7, 3, 5, 2, 5, 4, 7, 6, 1, 4, 9, 0, 3, 3, 4, 6, 6, 1, 9, 8, 9, 8, 5, 6, 0, 1, 8, 3, 9, 3, 4, 9, 5, 7, 9, 2, 7, 1, 6, 9, 6, 9, 3, 3, 9, 6, 5, 5, 6, 8, 5, 7, 4, 2, 9, 3, 0, 4, 0, 0, 5, 9, 0, 1, 3, 0, 2, 9, 3, 0, 5, 7, 6, 0, 6, 9, 2, 0, 0, 0, 3, 1, 1, 4, 6, 4, 5, 3, 8
Offset: 1

Views

Author

Paolo Xausa, Dec 17 2024

Keywords

Comments

The pentakis dodecahedron is the dual polyhedron of the truncated icosahedron.

Examples

			2.7352547614903346619898560183934957927169693...
		

Crossrefs

Cf. A379132 (surface area), A379133 (volume), A379134 (inradius), A379135 (midradius).
Cf. A236367 and A344075 (dihedral angles of a truncated icosahedron).
Cf. A002163.

Programs

  • Mathematica
    First[RealDigits[ArcCos[-(80 + 9*Sqrt[5])/109], 10, 100]] (* or *)
    First[RealDigits[First[PolyhedronData["PentakisDodecahedron", "DihedralAngles"]], 10, 100]]
  • PARI
    acos(-(80 + 9*sqrt(5))/109) \\ Charles R Greathouse IV, Feb 05 2025

Formula

Equals arccos(-(80 + 9*sqrt(5))/109) = arccos(-(80 + 9*A002163)/109).
Previous Showing 31-40 of 165 results. Next