cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 35 results. Next

A299377 Numbers k such that k * 14^k - 1 is prime.

Original entry on oeis.org

1, 3, 7, 98, 104, 128, 180, 834, 1633, 8000, 28538, 46605, 131941, 147684, 433734
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Feb 08 2018

Keywords

Comments

a(16) > 500000.

Crossrefs

Numbers n such that n * b^n - 1 is prime: A008864 (b=1), A002234 (b=2), A006553 (b=3), A086661 (b=4), A059676 (b=5), A059675 (b=6), A242200 (b=7), A242201 (b=8), A242202 (b=9), A059671 (b=10), A299374 (b=11), A299375 (b=12), A299376 (b=13), this sequence (b=14), A299378 (b=15), A299379 (b=16), A299380 (b=17), A299381 (b=18), A299382 (b=19), A299383 (b=20).

Programs

  • Magma
    [n: n in [1..10000] |IsPrime(n*14^n-1)];
  • Mathematica
    Select[Range[1, 10000], PrimeQ[n*14^n-1] &]
  • PARI
    for(n=1, 10000, if(isprime(n*14^n-1), print1(n", ")))
    

A299378 Numbers k such that k * 15^k - 1 is prime.

Original entry on oeis.org

2, 10, 14, 2312, 16718, 26906, 27512, 41260, 45432, 162454, 217606
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Feb 08 2018

Keywords

Comments

a(12) > 500000.

Crossrefs

Numbers n such that n * b^n - 1 is prime: A008864 (b=1), A002234 (b=2), A006553 (b=3), A086661 (b=4), A059676 (b=5), A059675 (b=6), A242200 (b=7), A242201 (b=8), A242202 (b=9), A059671 (b=10), A299374 (b=11), A299375 (b=12), A299376 (b=13), A299377 (b=14), this sequence (b=15), A299379 (b=16), A299380 (b=17), A299381 (b=18), A299382 (b=19), A299383 (b=20).

Programs

  • Magma
    [n: n in [1..10000] |IsPrime(n*15^n-1)];
  • Mathematica
    Select[Range[1, 10000], PrimeQ[n*15^n-1] &]
  • PARI
    for(n=1, 10000, if(isprime(n*15^n-1), print1(n", ")))
    

A299379 Numbers k such that k * 16^k - 1 is prime.

Original entry on oeis.org

167, 189, 639
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Feb 08 2018

Keywords

Comments

a(4) > 500000.

Crossrefs

Numbers n such that n * b^n - 1 is prime: A008864 (b=1), A002234 (b=2), A006553 (b=3), A086661 (b=4), A059676 (b=5), A059675 (b=6), A242200 (b=7), A242201 (b=8), A242202 (b=9), A059671 (b=10), A299374 (b=11), A299375 (b=12), A299376 (b=13), A299377 (b=14), A299378 (b=15), this sequence (b=16), A299380 (b=17), A299381 (b=18), A299382 (b=19), A299383 (b=20).

Programs

  • Magma
    [n: n in [1..10000] |IsPrime(n*16^n-1)];
  • Mathematica
    Select[Range[1, 10000], PrimeQ[n*16^n-1] &]
  • PARI
    for(n=1, 10000, if(isprime(n*16^n-1), print1(n", ")))
    

A299380 Numbers k such that k * 17^k - 1 is prime.

Original entry on oeis.org

2, 18, 20, 38, 68, 3122, 3488, 39500
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Feb 08 2018

Keywords

Comments

a(9) > 400000.

Crossrefs

Numbers n such that n * b^n - 1 is prime: A008864 (b=1), A002234 (b=2), A006553 (b=3), A086661 (b=4), A059676 (b=5), A059675 (b=6), A242200 (b=7), A242201 (b=8), A242202 (b=9), A059671 (b=10), A299374 (b=11), A299375 (b=12), A299376 (b=13), A299377 (b=14), A299378 (b=15), A299379 (b=16), this sequence (b=17), A299381 (b=18), A299382 (b=19), A299383 (b=20).

Programs

  • Magma
    [n: n in [1..10000] |IsPrime(n*17^n-1)];
  • Mathematica
    Select[Range[1, 10000], PrimeQ[n*17^n-1] &]
  • PARI
    for(n=1, 10000, if(isprime(n*17^n-1), print1(n", ")))
    

A299381 Numbers k such that k * 18^k - 1 is prime.

Original entry on oeis.org

1, 2, 6, 8, 10, 28, 30, 39, 45, 112, 348, 380, 458, 585, 17559, 38751, 43346, 46984, 92711
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Feb 08 2018

Keywords

Comments

a(20) > 400000.

Crossrefs

Numbers n such that n * b^n - 1 is prime: A008864 (b=1), A002234 (b=2), A006553 (b=3), A086661 (b=4), A059676 (b=5), A059675 (b=6), A242200 (b=7), A242201 (b=8), A242202 (b=9), A059671 (b=10), A299374 (b=11), A299375 (b=12), A299376 (b=13), A299377 (b=14), A299378 (b=15), A299379 (b=16), A299380 (b=17), this sequence (b=18), A299382 (b=19), A299383 (b=20).

Programs

  • Magma
    [n: n in [1..10000] |IsPrime(n*18^n-1)];
  • Mathematica
    Select[Range[1, 10000], PrimeQ[n*18^n-1] &]
  • PARI
    for(n=1, 10000, if(isprime(n*18^n-1), print1(n", ")))
    

A299382 Numbers k such that k * 19^k - 1 is prime.

Original entry on oeis.org

12, 410, 33890, 91850, 146478, 189620, 280524
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Feb 08 2018

Keywords

Comments

a(8) > 400000.

Crossrefs

Numbers n such that n * b^n - 1 is prime: A008864 (b=1), A002234 (b=2), A006553 (b=3), A086661 (b=4), A059676 (b=5), A059675 (b=6), A242200 (b=7), A242201 (b=8), A242202 (b=9), A059671 (b=10), A299374 (b=11), A299375 (b=12), A299376 (b=13), A299377 (b=14), A299378 (b=15), A299379 (b=16), A299380 (b=17), A299381 (b=18), this sequence (b=19), A299383 (b=20).

Programs

  • Magma
    [n: n in [1..10000] |IsPrime(n*19^n-1)];
  • Mathematica
    Select[Range[1, 10000], PrimeQ[n*19^n-1] &]
  • PARI
    for(n=1, 10000, if(isprime(n*19^n-1), print1(n", ")))
    

A299383 Numbers k such that k * 20^k - 1 is prime.

Original entry on oeis.org

1, 18, 44, 60, 80, 123, 429, 1166, 2065, 8774, 35340, 42968, 50312, 210129
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Feb 08 2018

Keywords

Comments

a(15) > 400000.

Crossrefs

Numbers n such that n * b^n - 1 is prime: A008864 (b=1), A002234 (b=2), A006553 (b=3), A086661 (b=4), A059676 (b=5), A059675 (b=6), A242200 (b=7), A242201 (b=8), A242202 (b=9), A059671 (b=10), A299374 (b=11), A299375 (b=12), A299376 (b=13), A299377 (b=14), A299378 (b=15), A299379 (b=16), A299380 (b=17), A299381 (b=18), A299382 (b=19), this sequence (b=20).

Programs

  • Magma
    [n: n in [1..10000] |IsPrime(n*20^n-1)];
  • Mathematica
    Select[Range[1, 10000], PrimeQ[n*20^n-1] &]
  • PARI
    for(n=1, 10000, if(isprime(n*20^n-1), print1(n", ")))
    

A367037 Numbers k such that k^3*2^k - 1 is a prime.

Original entry on oeis.org

2, 8, 31, 79, 661, 769, 1904, 2527, 9032, 15895, 19171
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Nov 02 2023

Keywords

Comments

If it exists, a(12) > 100000. - Hugo Pfoertner, Nov 03 2023

Crossrefs

Numbers k such that k^m*2^k - 1 is prime: A000043 (m = 0), A002234 (m = 1), A058781 (m = 2), this sequence (m = 3).

Programs

  • Magma
    [k: k in [1..700] | IsPrime(k^3*2^k-1)];
  • Mathematica
    Select[Range[3000], PrimeQ[#^3*2^# - 1] &] (* Amiram Eldar, Nov 04 2023 *)

Extensions

a(11) from Hugo Pfoertner, Nov 02 2023

A367102 Numbers k such that k^4*2^k - 1 is a prime.

Original entry on oeis.org

3, 29, 43, 83, 133, 209, 271, 329, 415, 727, 2437, 5673, 6879, 7813, 8125, 11931, 29433, 29491, 38397, 91141, 99459, 110935, 127247
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Nov 04 2023

Keywords

Crossrefs

Numbers k such that k^m*2^k - 1 is prime: A000043 (m = 0), A002234 (m = 1), A058781 (m = 2), A367037 (m = 3), this sequence (m = 4).

Programs

  • Magma
    [k: k in [1..500] | IsPrime(k^4*2^k-1)];
  • Mathematica
    Select[Range[6000], PrimeQ[#^4*2^# - 1] &] (* Amiram Eldar, Nov 05 2023 *)

Extensions

a(17)-a(18) from Amiram Eldar, Nov 05 2023
a(19) from Michael S. Branicky, Nov 05 2023
a(20)-a(23) from Hugo Pfoertner, Nov 08 2023, Nov 10 2023

A257379 Smallest odd number k such that k*n*2^n - 1 is a prime number.

Original entry on oeis.org

3, 1, 1, 3, 3, 1, 3, 3, 5, 5, 9, 5, 7, 7, 3, 17, 11, 11, 7, 9, 11, 15, 3, 7, 9, 67, 3, 45, 3, 1, 33, 21, 15, 23, 17, 3, 7, 9, 19, 15, 17, 63, 51, 3, 9, 33, 53, 61, 13, 45, 75, 39, 83, 43, 7, 19, 13, 41, 5, 19, 31, 165, 13, 27, 3, 13, 135, 33, 31, 15, 33, 87
Offset: 1

Views

Author

Pierre CAMI, Apr 21 2015

Keywords

Comments

Conjecture: a(n) exists for every n.
The conjecture follows from Dirichlet's theorem on primes in arithmetic progressions. - Robert Israel, Jan 05 2016
As N increases, (Sum_{n=1..N} k) / (Sum_{n=1..N} n) approaches 0.833.
If k=1 then n*2^n-1 is a Woodall prime (see A002234).
Generalized Woodall primes have the form n*b^n-1, I propose to name the primes k*n*2^n-1 generalized Woodall primes of the second type.

Examples

			1*1*2^1 - 1 = unity, 3*1*2^1 - 1 = 5, which is prime, so a(1) = 3.
1*2*2^2 - 1 = 7, which is prime, so a(2) = 1.
1*3*2^3 - 1 = 23, which is prime, so a(3) = 1.
		

Crossrefs

Programs

  • Maple
    Q:= proc(m) local k;
      for k from 1 by 2 do if isprime(k*m-1) then return k fi od
    end proc:
    seq(Q(n*2^n),n=1..100); # Robert Israel, Jan 05 2016
  • Mathematica
    Table[k = 1; While[!PrimeQ[k*n*2^n - 1], k += 2]; k, {n, 72}] (* Michael De Vlieger, Apr 21 2015 *)
  • PARI
    a(n) = k=1; while(!isprime(k*n*2^n-1), k+=2); k \\ Colin Barker, Apr 21 2015
Previous Showing 11-20 of 35 results. Next