cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-72 of 72 results.

A386379 a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/5)} a(5*k) * a(n-1-5*k).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 13, 21, 30, 40, 51, 114, 190, 280, 385, 506, 1150, 1950, 2925, 4095, 5481, 12586, 21576, 32736, 46376, 62832, 145299, 250971, 383838, 548340, 749398, 1741844, 3025308, 4654320, 6690585, 9203634, 21475146, 37456650, 57887550
Offset: 0

Views

Author

Seiichi Manyama, Jul 20 2025

Keywords

Crossrefs

Programs

  • PARI
    apr(n, p, r) = r*binomial(n*p+r, n)/(n*p+r);
    a(n) = apr(n\5, 6, n%5+1);

Formula

For k=0..4, a(5*n+k) = (k+1) * binomial(6*n+k+1,n)/(6*n+k+1).
G.f. A(x) satisfies A(x) = 1/(1 - x * Product_{k=0..4} A(w^k*x)), where w = exp(2*Pi*i/5).

A059967 Number of 9-ary trees.

Original entry on oeis.org

1, 9, 117, 1785, 29799, 527085, 9706503, 184138713, 3573805950, 70625252863, 1416298046436, 28748759731965, 589546754316126, 12195537924351375, 254184908607118800, 5332692942907262361, 112524941404978156215
Offset: 0

Views

Author

Claude Lenormand (claude.lenormand(AT)free.fr), Mar 05 2001

Keywords

Crossrefs

Related algebraic sequences concerning trees: strictly k-ary trees (A000108: s=x+s^2, A001263: s=(x, y)+(x, s)+(s, y)+(s, s))), (A001764: s=x+s^3), (A002293: s=x+s^4), (A002294: s=x+s^5), (A002295: s=x+s^6), (A002296: s=x+s^7), (A007556: s=x+s^8), at most k-ary trees (A001006: s=x+xs+xs^2), (A036765-A036769, s=x+xs^2....+xs^k, k=3, 4, 5, 6, 7).

Programs

  • Maple
    with(combinat): for n from 1 to 40 do printf(`%d,`,binomial(9*n,n)/((9-1)*n+1)) od:

Formula

G.f. A(x) satisfies: A = x + A^9.
a(n) = C(k*n, n)/((k-1)*n+1), k=9.

Extensions

More terms from James Sellers, Mar 15 2001
Previous Showing 71-72 of 72 results.