cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 71 results. Next

A217088 Numbers n such that (n^89-1)/(n-1) is prime.

Original entry on oeis.org

2, 114, 159, 190, 234, 251, 436, 616, 834, 878, 1008, 1049, 1060, 1062, 1118, 1472, 1689, 1792, 2282, 2334, 2463, 2494, 2584, 2672, 2706, 2739, 2747, 2872, 3145, 3210, 3312, 3427, 3429, 3442, 3652, 3855, 4000, 4074, 4104, 4287, 4419, 4493, 4635, 4675, 4708, 4839
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Sep 26 2012

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[2, 1000], PrimeQ[(#^89 - 1)/(# - 1)] &] (* T. D. Noe, Sep 26 2012 *)
  • PARI
    is(n)=isprime((n^89-1)/(n-1)) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

More terms from T. D. Noe, Sep 26 2012

A075723 Numbers n such that 1 + n + n^6 is a prime.

Original entry on oeis.org

1, 2, 3, 6, 8, 15, 17, 29, 30, 32, 45, 48, 59, 72, 74, 80, 87, 128, 141, 153, 155, 156, 158, 176, 182, 191, 197, 210, 216, 230, 273, 284, 293, 305, 314, 356, 366, 380, 384, 399, 402, 407, 408, 410, 413, 420, 435, 443, 447, 450, 473, 479, 497
Offset: 1

Views

Author

Zak Seidov, Oct 03 2002

Keywords

Comments

For s = 5,8,11,14,17,20,..., n_s=1+n+n^s is always composite for any n>1. Also at n=1, n_s=3 is a prime for any s. So it is interesting to consider only the cases of s != 5,8,11,14,17,20,... and n>1. Here I consider the case s=6 and find several first n's making n_s a prime (or a probable prime).

Examples

			15 is OK because at s=6, n=15, n_s = 1 + n + n^s = 11390641 is a prime.
		

Crossrefs

Programs

  • Magma
    [n: n in [0..500] | IsPrime(s) where s is 1+n+n^6]; // Vincenzo Librandi, Jul 28 2014
    
  • Mathematica
    Select[Range[500], PrimeQ[1 + # + #^6] &] (* Vincenzo Librandi, Jul 28 2014 *)
  • PARI
    for(n=1,10^3,if(isprime(n^6+n+1),print1(n,", "))) \\ Derek Orr, Feb 07 2015

A217076 Numbers k such that (k^37-1)/(k-1) is prime.

Original entry on oeis.org

61, 77, 94, 97, 99, 113, 126, 130, 134, 147, 161, 172, 187, 202, 208, 246, 261, 273, 285, 302, 320, 432, 444, 503, 523, 525, 563, 666, 680, 709, 740, 757, 787, 902, 962, 964, 969, 1013, 1109, 1165, 1186, 1219, 1351, 1528, 1587, 1660, 1698, 1710, 1754, 1811, 1972
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Sep 26 2012

Keywords

Crossrefs

Programs

  • Magma
    [n: n in [2..2000] |IsPrime((n^37 - 1) div (n - 1))]; // Vincenzo Librandi, Sep 28 2012
    
  • Mathematica
    Select[Range[2, 2000], PrimeQ[(#^37 - 1)/(# - 1)] &] (* T. D. Noe, Sep 26 2012 *)
  • PARI
    is(n)=isprime((n^37-1)/(n-1)) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

More terms from T. D. Noe, Sep 26 2012

A217077 Numbers n such that (n^41-1)/(n-1) is prime.

Original entry on oeis.org

14, 53, 55, 58, 71, 76, 82, 211, 248, 271, 296, 316, 430, 433, 439, 472, 545, 553, 555, 596, 663, 677, 682, 746, 814, 832, 885, 926, 947, 959, 1048, 1121, 1146, 1175, 1207, 1300, 1302, 1390, 1404, 1445, 1466, 1541, 1650, 1699, 1702, 1706, 1756, 1757, 1782, 1902
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Sep 26 2012

Keywords

Crossrefs

Programs

  • Magma
    [n: n in [2..2000] |IsPrime((n^41 - 1) div (n - 1))]; // Vincenzo Librandi, Sep 28 2012
    
  • Mathematica
    Select[Range[2, 2000], PrimeQ[(#^41 - 1)/(# - 1)] &] (* T. D. Noe, Sep 26 2012 *)
  • PARI
    is(n)=isprime((n^41-1)/(n-1)) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

More terms from T. D. Noe, Sep 26 2012

A217078 Numbers n such that (n^43-1)/(n-1) is prime.

Original entry on oeis.org

15, 21, 26, 86, 89, 114, 123, 163, 180, 310, 332, 377, 409, 438, 448, 457, 477, 526, 534, 556, 586, 612, 653, 665, 690, 692, 709, 760, 783, 803, 821, 848, 877, 899, 909, 942, 981, 1041, 1042, 1043, 1066, 1068, 1069, 1106, 1126, 1139, 1197, 1310, 1386, 1476, 1561
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Sep 26 2012

Keywords

Crossrefs

Programs

  • Magma
    [n: n in [2..1600] |IsPrime((n^43 - 1) div (n - 1))]; // Vincenzo Librandi, Sep 28 2012
    
  • Mathematica
    Select[Range[2, 1600], PrimeQ[(#^43 - 1)/(# - 1)] &] (* T. D. Noe, Sep 26 2012 *)
  • PARI
    is(n)=isprime((n^43-1)/(n-1)) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

More terms from T. D. Noe, Sep 26 2012

A217079 Numbers n such that (n^47-1)/(n-1) is prime.

Original entry on oeis.org

5, 17, 19, 55, 62, 75, 89, 98, 99, 132, 172, 186, 197, 220, 268, 278, 279, 288, 439, 443, 496, 579, 583, 587, 742, 777, 825, 911, 966, 1003, 1029, 1155, 1202, 1267, 1377, 1461, 1472, 1473, 1530, 1562, 1634, 1682, 1705, 1783, 1848, 1852, 1885, 1900, 1943, 1957
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Sep 26 2012

Keywords

Crossrefs

Programs

  • Magma
    [n: n in [2..2000] |IsPrime((n^47 - 1) div (n - 1))]; // Vincenzo Librandi, Sep 28 2012
    
  • Mathematica
    Select[Range[2, 2000], PrimeQ[(#^47 - 1)/(# - 1)] &] (* T. D. Noe, Sep 26 2012 *)
  • PARI
    is(n)=isprime((n^47-1)/(n-1)) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

More terms from T. D. Noe, Sep 26 2012

A217080 Numbers n such that (n^53-1)/(n-1) is prime.

Original entry on oeis.org

24, 45, 60, 165, 235, 272, 285, 298, 307, 381, 416, 429, 623, 799, 858, 924, 929, 936, 1034, 1067, 1076, 1130, 1223, 1243, 1327, 1488, 1592, 1594, 1659, 1673, 1676, 1678, 1762, 1873, 1917, 1928, 1997, 2110, 2117, 2141, 2166, 2231, 2243, 2293, 2338, 2380, 2420
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Sep 26 2012

Keywords

Crossrefs

Programs

  • Magma
    [n: n in [2..2450] |IsPrime((n^53 - 1) div (n - 1))]; // Vincenzo Librandi, Sep 28 2012
    
  • Mathematica
    Select[Range[2, 2500], PrimeQ[(#^53 - 1)/(# - 1)] &] (* T. D. Noe, Sep 26 2012 *)
  • PARI
    is(n)=isprime((n^53-1)/(n-1)) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

More terms from T. D. Noe, Sep 26 2012

A217081 Numbers n such that (n^59-1)/(n-1) is prime.

Original entry on oeis.org

19, 70, 102, 116, 126, 188, 209, 257, 294, 359, 451, 461, 468, 470, 638, 653, 710, 762, 766, 781, 824, 901, 939, 964, 995, 1036, 1047, 1098, 1150, 1211, 1234, 1243, 1256, 1278, 1389, 1401, 1422, 1436, 1454, 1492, 1523, 1639, 1703, 1705, 1826, 1913, 1915, 1978
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Sep 26 2012

Keywords

Crossrefs

Programs

  • Magma
    [n: n in [2..2000] |IsPrime((n^59 - 1) div (n - 1))]; // Vincenzo Librandi, Sep 28 2012
    
  • Mathematica
    Select[Range[2, 2000], PrimeQ[(#^59 - 1)/(# - 1)] &] (* T. D. Noe, Sep 26 2012 *)
  • PARI
    is(n)=isprime((n^59-1)/(n-1)) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

More terms from T. D. Noe, Sep 26 2012

A217082 Numbers n such that (n^61-1)/(n-1) is prime.

Original entry on oeis.org

2, 19, 69, 88, 138, 155, 205, 234, 336, 420, 425, 455, 470, 525, 555, 561, 608, 626, 667, 674, 766, 779, 846, 851, 937, 971, 998, 1053, 1055, 1112, 1137, 1263, 1329, 1383, 1445, 1448, 1499, 1544, 1551, 1578, 1640, 1689, 1724, 1750, 1793, 1868, 2143, 2241, 2358
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Sep 26 2012

Keywords

Crossrefs

Programs

  • Magma
    [n: n in [2..2400] |IsPrime((n^61 - 1) div (n - 1))]; // Vincenzo Librandi, Sep 28 2012
    
  • Mathematica
    Select[Range[2, 2400], PrimeQ[(#^61 - 1)/(# - 1)] &] (* T. D. Noe, Sep 26 2012 *)
  • PARI
    is(n)=isprime((n^61-1)/(n-1)) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

More terms from T. D. Noe, Sep 26 2012

A217083 Numbers n such that (n^67-1)/(n-1) is prime.

Original entry on oeis.org

46, 122, 238, 304, 314, 315, 328, 332, 346, 372, 382, 426, 440, 491, 496, 510, 524, 528, 566, 638, 733, 826, 1016, 1054, 1071, 1214, 1309, 1338, 1388, 1401, 1457, 1512, 1536, 1582, 1624, 1718, 1773, 1814, 1816, 1825, 1952, 1985, 2021, 2072, 2308, 2349, 2449, 2481
Offset: 1

Views

Author

Tim Johannes Ohrtmann, Sep 26 2012

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[2, 2500], PrimeQ[(#^67 - 1)/(# - 1)] &] (* T. D. Noe, Sep 26 2012 *)
  • PARI
    is(n)=isprime((n^67-1)/(n-1)) \\ Charles R Greathouse IV, Feb 17 2017

Extensions

More terms from T. D. Noe, Sep 26 2012
Previous Showing 21-30 of 71 results. Next