cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-13 of 13 results.

A020933 Expansion of (1-4*x)^(21/2).

Original entry on oeis.org

1, -42, 798, -9044, 67830, -352716, 1293292, -3325608, 5819814, -6466460, 3879876, -705432, -117572, -54264, -38760, -36176, -40698, -52668, -76076, -120120, -204204, -369512, -705432, -1410864, -2939300, -6348888, -14162904, -32522224, -76659528, -185040240
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[Surd[(1-4x)^21,2],{x,0,30}],x] (* Harvey P. Dale, Feb 25 2020 *)

Formula

D-finite with recurrence: n*a(n) +2*(-2*n+23)*a(n-1)=0. - R. J. Mathar, Jan 17 2020
From Amiram Eldar, Mar 25 2022: (Start)
a(n) = (-4)^n*binomial(21/2, n).
Sum_{n>=0} 1/a(n) = 406240/415701 - 46*Pi/(3^13*sqrt(3)).
Sum_{n>=0} (-1)^n/a(n) = 728323714975904/710426513671875 - 92*log(phi)/(5^12*sqrt(5)), where phi is the golden ratio (A001622). (End)

A182534 Array read by antidiagonals: coefficient of the Euler-Mascheroni constant in below expression.

Original entry on oeis.org

1, 1, 2, 2, 2, 3, 5, 4, 2, 6, 14, 10, 3, 4, 10, 42, 28, 6, 6, 5, 20, 132, 84, 14, 12, 6, 10, 35, 429, 264, 36, 28, 10, 12, 14, 70, 1430, 858, 99, 72, 20, 20, 14, 28, 126, 4862, 2860, 286, 198, 45, 40, 20, 28, 42, 252
Offset: 1

Views

Author

John M. Campbell, May 05 2012

Keywords

Comments

The (i,j)-entry of the array is the coefficient of the Euler-Mascheroni constant in: -2^(i+2j-1)/Pi*int(log(x)*cos(x)^i*sin(x)^(2j-1)/x, x=0..infinity); see Mathematica code below.
First row: A000108.
Second row: -A002420.
Third row: A007054.
Fourth row: A002421.
Fifth row: A007272.
Sixth row: -A002422.
Eighth row: A002423.
First column: A001405.
Second column: A089408.
Odd entries on main diagonal: A126596.

Examples

			Evaluate: -256/Pi*int(cos(x)^3*log(x)*sin(x)^5/x, x=0..infinity) = 3*eulergamma-log(9/8). Thus the (3,3) entry of the array is 3, the coefficient of the Euler-Mascheroni constant in this expression.
The array begins as:
| 1   1   2   5   14  42  132 429  ... |
| 2   2   4   10  28  84  264 858  ... |
| 3   2   3   6   14  36  99  286  ... |
| 6   4   6   12  28  72  198 572  ... |
| 10  5   6   10  20  45  110 286  ... |
| 20  10  12  20  40  90  220 572  ... |
| 35  14  14  20  35  70  154 364  ... |
| 70  28  28  40  70  140 308 728  ... |
| ... ... ... ... ... ... ... ...  ... |
		

Crossrefs

Programs

  • Mathematica
    A[a_, b_] :=
      A[a, b] =
       Array[Coefficient[
          Integrate[
            Log[x]*Cos[x]^#1*Sin[x]^(2 #2 - 1)/x, {x, 0,
             Infinity}] (2^(#1 + 2 #2 - 1))/(-\[Pi]), EulerGamma] &, {a, b}];
    A[11, 11];
    Print[A[11, 11] // MatrixForm];
    Table2 = {};
    k = 1;
    While[k < 11, Table1 = {};
      i = 1;
      j = k;
      While[0 < j,
        AppendTo[Table1,
        First[Take[First[Take[A[11, 11], {i, i}]], {j, j}]]];
        j = j - 1;
        i = i + 1];
        AppendTo[Table2, Table1];
        k++];
    Print[Flatten[Table2]]

A382874 Expansion of g.f. 2-hypergeom([3/2,7/2],[-1/2],4*x).

Original entry on oeis.org

1, 42, 1890, 32340, 378378, 3567564, 29201172, 216164520, 1484052570, 9607866268, 59342703420, 352648983960, 2029131058500, 11360419371000, 62125264788840, 332868702695760, 1751865025825530, 9075126224864700, 46353422502086700, 233788539957892920
Offset: 0

Views

Author

Karol A. Penson, Apr 07 2025

Keywords

Crossrefs

Programs

  • Maple
    seq(coeff(series(2-hypergeom([3/2, 7/2], [-1/2], 4*x), x, k+1), x, k), k=0..19);
  • PARI
    my(x='x+O('x^30)); Vec(2 - hypergeom([3/2,7/2],[-1/2],4*x)) \\ Michel Marcus, Apr 07 2025

Formula

a(0) = 1, a(n) = 8*4^n*(4*n^2 - 1)*Gamma(7/2 + n)/(15*sqrt(Pi)*n!), n>=1.
G.f.: 2 + (768*x^2 + 64*x - 1)/(1 - 4*x)^(11/2).
For n>=1, a(n) = (2*n-1) * (2*n+1)^2 * (2*n+3) * (2*n+5) * binomial(2*n,n)/15. - Vaclav Kotesovec, Apr 07 2025
Previous Showing 11-13 of 13 results.