A359024 Number of inequivalent tilings of an 8 X n rectangle using integer-sided square tiles.
1, 1, 21, 82, 861, 8038, 83609, 861159, 4495023
Offset: 0
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
Rows begin 1, 1, 1, 1, 1, 1, ... 1, 1, 2, 3, 5, 8, ... 1, 1, 3, 6, 13, 28, ... 1, 1, 4, 10, 26, 69, ... 1, 1, 5, 15, 45, 140, ... Row 1 is the 0-section of 1/(1-x-x) (A000079); Row 2 is the 1-section of 1/(1-x-x^2) (A000045); Row 3 is the 2-section of 1/(1-x-x^3) (A000930); Row 4 is the 3-section of 1/(1-x-x^4) (A003269); etc.
Some solutions for 5X3 ..0..5..1....4..0..1....4..1..2....0..5..1....0..1..2....0..1..2....0..5..1 ..3..4..2....3..8..2....0..3..5....3..4..2....3..4..5....7..3..5....3..8..2 ..6.11..7...10..7..5...10..6..7....6..7..8....6.11..7....6..4..8....6..4..7 .13..9..8....6..9.11....9.14..8....9.14.10...13.10..8....9.10.11....9.14.11 .12.10.14...12.13.14...12.13.11...12.13.11....9.12.14...12.13.14...12.10.13
Some solutions for n=3 k=4 ..0..3..0..1....0..4..0..1....2..0..2..0....0..3..2..0....2..1..0..1 ..0..1..0..1....1..1..1..1....1..0..0..2....0..1..1..1....0..2..3..0 ..1..2..3..0....1..1..0..1....1..3..0..1....2..0..1..1....1..1..0..1
Some solutions for n=3 k=4 ..0..2..0..2....0..4..0..0....0..2..2..0....0..2..3..2....0..1..0..1 ..2..1..0..0....1..1..1..1....1..3..1..0....0..0..0..0....2..1..0..4 ..2..0..0..3....0..2..1..1....0..1..0..2....2..1..1..1....2..1..0..0
Some solutions for n=3 k=4 ..0..0..0..0....1..0..0..1....0..0..1..0....0..0..1..0....0..0..0..1 ..0..1..0..0....0..0..0..0....1..0..0..0....0..0..0..0....0..1..0..0 ..0..0..0..0....0..1..0..1....0..0..0..1....1..0..0..1....0..0..0..0
Some solutions for n=3 k=4 ..0..2..2..2....0..1..1..0....0..1..0..1....2..0..0..1....0..1..2..0 ..1..1..2..0....1..1..3..1....0..2..0..2....0..4..3..0....0..1..4..0 ..1..0..0..1....0..3..0..1....2..2..0..2....0..0..2..0....0..2..0..2
Some solutions for n=5 k=4 ..0..0..0..1. .0..0..1..0. .0..0..1..0. .0..0..0..0. .0..1..0..0 ..1..0..0..0. .1..0..0..0. .0..0..0..0. .0..0..0..0. .0..0..0..1 ..0..0..0..1. .0..0..1..0. .1..0..0..1. .0..1..0..1. .1..0..0..0 ..0..0..0..0. .1..0..0..0. .0..0..0..0. .0..0..0..0. .0..0..1..0 ..1..0..0..0. .0..0..0..1. .1..0..0..0. .0..0..0..0. .0..0..0..0
Comments