cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 71-80 of 384 results. Next

A317931 Numerators of rational valued sequence whose Dirichlet convolution with itself yields A002487, Stern's Diatomic sequence.

Original entry on oeis.org

1, 1, 1, 3, 3, 1, 3, 5, 3, 3, 5, 3, 5, 3, 1, 35, 5, 3, 7, 9, 5, 5, 7, 5, 19, 5, 5, 9, 7, 1, 5, 63, 1, 5, 9, 9, 11, 7, 5, 15, 11, 5, 13, 15, 13, 7, 9, 35, 27, 19, 7, 15, 13, 5, 7, 15, 3, 7, 11, 3, 9, 5, -7, 231, -1, 1, 11, 15, 7, 9, 13, 15, 15, 11, 47, 21, 19, 5, 13, 105, 27, 11, 19, 15, 27, 13, 11, 25, 17, 13, 23, 21, 11, 9, 1, 63
Offset: 1

Views

Author

Antti Karttunen, Aug 11 2018

Keywords

Crossrefs

Cf. A002487, A317932 (denominators, conjectured).

Programs

Formula

a(n) = numerator of f(n), where f(1) = 1, f(n) = (1/2) * (A002487(n) - Sum_{d|n, d>1, d 1.

A318509 Completely multiplicative with a(p) = A002487(p).

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 6, 1, 5, 4, 7, 3, 6, 5, 7, 2, 9, 5, 8, 3, 7, 6, 5, 1, 10, 5, 9, 4, 11, 7, 10, 3, 11, 6, 13, 5, 12, 7, 9, 2, 9, 9, 10, 5, 13, 8, 15, 3, 14, 7, 11, 6, 9, 5, 12, 1, 15, 10, 11, 5, 14, 9, 13, 4, 15, 11, 18, 7, 15, 10, 13, 3, 16, 11, 19, 6, 15, 13, 14, 5, 17, 12, 15, 7, 10, 9, 21, 2, 11, 9, 20, 9, 19, 10, 17, 5, 18
Offset: 1

Views

Author

Antti Karttunen, Aug 30 2018

Keywords

Comments

Provided that the conjecture given in A261179 holds, then for all n >= 1, A007814(a(n)) = A007949(n).

Crossrefs

Cf. also A318307.

Programs

  • PARI
    A002487(n) = { my(a=1, b=0); while(n>0, if(bitand(n, 1), b+=a, a+=b); n>>=1); (b); }; \\ From A002487
    A318509(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 1] = A002487(f[i, 1])); factorback(f); };
    
  • Python
    from math import prod
    from functools import reduce
    from sympy import factorint
    def A318509(n): return prod(sum(reduce(lambda x,y:(x[0],x[0]+x[1]) if int(y) else (x[0]+x[1],x[1]),bin(p)[-1:2:-1],(1,0)))**e for p, e in factorint(n).items()) # Chai Wah Wu, May 18 2023

A319687 a(n) = A318509(n) - A002487(n).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, -2, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 0, 2, -2, 0, 0, 0, 4, 0, 4, 0, 0, 2, 0, 0, 6, 0, 8, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2, 0, 0, 0, 2, 0, 0, -2, -6, 0, -4, 0, 0, 0, -4, 0, -6, 0, 10, 0, 0, 0, 4, 2, 0, -2, 0, 0, 0
Offset: 1

Views

Author

Antti Karttunen, Oct 02 2018

Keywords

Comments

All terms seem to be even. See the conjecture given in A261179.

Crossrefs

Programs

  • PARI
    A002487(n) = { my(a=1, b=0); while(n>0, if(bitand(n, 1), b+=a, a+=b); n>>=1); (b); }; \\ From A002487
    A318509(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 1] = A002487(f[i, 1])); factorback(f); };
    A319687(n) = (A318509(n) - A002487(n));
    
  • Python
    from math import prod
    from functools import reduce
    from sympy import factorint
    def A319687(n): return prod(sum(reduce(lambda x,y:(x[0],x[0]+x[1]) if int(y) else (x[0]+x[1],x[1]),bin(p)[-1:2:-1],(1,0)))**e for p, e in factorint(n).items())-sum(reduce(lambda x,y:(x[0],x[0]+x[1]) if int(y) else (x[0]+x[1],x[1]),bin(n)[-1:2:-1],(1,0))) # Chai Wah Wu, May 18 2023

Formula

a(n) = A318509(n) - A002487(n).

A323897 Lexicographically earliest sequence such that a(i) = a(j) => A002487(i) = A002487(j) and A083254(i) = A083254(j), for all i, j >= 1.

Original entry on oeis.org

1, 2, 3, 2, 4, 5, 6, 2, 7, 8, 9, 10, 11, 8, 12, 2, 13, 14, 15, 16, 17, 18, 19, 20, 21, 18, 22, 16, 23, 24, 25, 2, 26, 18, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 30, 38, 39, 40, 41, 42, 36, 43, 34, 44, 32, 45, 30, 46, 47, 48, 18, 49, 2, 50, 51, 52, 36, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 58, 66, 67, 68, 69, 70, 71, 72, 73, 74, 60, 75
Offset: 1

Views

Author

Antti Karttunen, Feb 09 2019

Keywords

Comments

Restricted growth sequence transform of the ordered pair [A002487(n), A083254(n)].

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A002487(n) = { my(a=1, b=0); while(n>0, if(bitand(n, 1), b+=a, a+=b); n>>=1); (b); }; \\ From A002487
    A083254(n) = (2*eulerphi(n)-n);
    A323897aux(n) = [A002487(n), A083254(n)];
    v323897 = rgs_transform(vector(up_to,n,A323897aux(n)));
    A323897(n) = v323897[n];

Formula

a(2^n) = 2 for all n >= 1.

A324049 a(n) = A002487(A324051(n)).

Original entry on oeis.org

0, 1, 1, 3, 1, 1, 2, 0, 1, 4, 3, 2, 1, 1, 2, 11, 2, 1, 4, 4, 4, 7, 5, 1, 1, 1, 5, 3, 3, 26, 4, 3, 11, 4, 3, 2, 1, 2, 5, 21, 4, 3, 6, 1, 5, 37, 7, 2, 5, 1, 7, 1, 3, 12, 9, 4, 40, 14, 8, 4, 76, 1, 6, 4, 8, 63, 5, 7, 3, 3, 1, 53, 27, 3, 9, 7, 5, 5, 10, 2, 199, 98, 10, 4, 37, 6, 4, 2, 4, 8, 25, 34, 104, 12, 3, 43, 6, 1, 4, 5, 2, 117, 13, 2, 1, 3, 7, 76, 4
Offset: 2

Views

Author

Antti Karttunen, Feb 22 2019

Keywords

Crossrefs

Programs

Formula

a(n) = A002487(A324051(n)).

A324286 a(n) = A002487(A048675(n)).

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 2, 1, 3, 1, 1, 1, 4, 2, 1, 1, 3, 1, 2, 3, 5, 1, 3, 1, 6, 2, 3, 1, 3, 1, 3, 4, 7, 2, 2, 1, 8, 5, 3, 1, 5, 1, 4, 1, 9, 1, 2, 1, 4, 6, 5, 1, 3, 3, 5, 7, 10, 1, 1, 1, 11, 2, 2, 4, 7, 1, 6, 8, 5, 1, 3, 1, 12, 3, 7, 2, 9, 1, 1, 1, 13, 1, 2, 5, 14, 9, 7, 1, 4, 3, 8, 10, 15, 6, 3, 1, 5, 3, 3, 1, 11, 1, 9, 3
Offset: 1

Views

Author

Antti Karttunen, Feb 22 2019

Keywords

Comments

Like A323902 and A323903, this also has quite a moderate growth rate, even though some terms of A048675 soon grow quite big.

Crossrefs

Programs

  • PARI
    A002487(n) = { my(s=sign(n), a=1, b=0); n = abs(n); while(n>0, if(bitand(n, 1), b+=a, a+=b); n>>=1); (s*b); };
    A048675(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*2^primepi(f[k, 1]))/2; }; \\ From A048675
    A324286(n) = A002487(A048675(n));

Formula

a(n) = A002487(A048675(n)) = A002487(A322821(n)).
a(A283477(n)) = A324287(n).

A331601 a(n) = A002487(A241909(n)).

Original entry on oeis.org

1, 1, 1, 2, 1, 4, 1, 3, 2, 8, 1, 7, 1, 14, 4, 3, 1, 4, 1, 11, 8, 22, 1, 9, 2, 64, 3, 43, 1, 18, 1, 5, 14, 110, 4, 9, 1, 162, 22, 47, 1, 34, 1, 127, 7, 440, 1, 13, 2, 12, 64, 191, 1, 8, 8, 97, 110, 1002, 1, 23, 1, 752, 11, 5, 14, 112, 1, 1249, 162, 16, 1, 17, 1, 610, 4, 897, 4, 220, 1, 111, 3, 4882, 1, 121, 22, 5494, 440, 281, 1, 26, 8, 7623, 1002
Offset: 1

Views

Author

Antti Karttunen, Jan 22 2020

Keywords

Crossrefs

Programs

  • PARI
    A002487(n) = { my(a=1, b=0); while(n>0, if(bitand(n, 1), b+=a, a+=b); n>>=1); (b); }; \\ From A002487
    A241909(n) = if(1==n||isprime(n),2^primepi(n),my(f=factor(n),h=1,i,m=1,p=1,k=1); while(k<=#f~, p = nextprime(1+p); i = primepi(f[k,1]); m *= p^(i-h); h = i; if(f[k,2]>1, f[k,2]--, k++)); (p*m));
    A331601(n) = A002487(A241909(n));

Formula

a(n) = A002487(A241909(n)).
a(n) = A002487(A331732(n)).

A331748 a(n) = A002487(n) XOR A002487(A163511(n)).

Original entry on oeis.org

1, 0, 0, 0, 0, 7, 0, 0, 0, 12, 7, 2, 0, 1, 0, 7, 0, 11, 12, 12, 7, 26, 2, 14, 0, 11, 1, 1, 0, 15, 7, 0, 0, 16, 11, 34, 12, 41, 12, 37, 7, 27, 26, 26, 2, 22, 14, 4, 0, 25, 11, 27, 1, 31, 1, 26, 0, 12, 15, 0, 7, 15, 0, 3, 0, 71, 16, 116, 11, 126, 34, 108, 12, 91, 41, 107, 12, 11, 37, 98, 7, 76, 27, 74, 26, 61, 26, 43, 2, 53, 22, 42, 14, 34, 4, 22, 0, 57
Offset: 0

Views

Author

Antti Karttunen, Feb 05 2020

Keywords

Crossrefs

Programs

Formula

a(n) = A002487(n) XOR A323901(n) = A002487(n) XOR A002487(A163511(n)).
a(2^n) = 0 for all n >= 0.

A331749 a(n) = A002487(A163511(n)) - A002487(n).

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 0, 0, 0, 4, 1, 2, 0, -1, 0, -1, 0, 9, 4, 4, 1, 10, 2, 2, 0, 5, -1, 1, 0, 1, -1, 0, 0, 16, 9, 34, 4, 23, 4, 37, 1, 5, 10, 10, 2, 14, 2, 4, 0, 7, 5, 11, -1, 5, 1, 6, 0, -4, 1, 0, -1, -3, 0, -1, 0, 57, 16, 116, 9, 98, 34, 84, 4, 69, 23, 103, 4, 9, 37, 98, 1, 52, 5, 70, 10, 19, 10, 39, 2, 19, 14, 38, 2, 34, 4, 18, 0, 39
Offset: 0

Views

Author

Antti Karttunen, Feb 05 2020

Keywords

Crossrefs

Programs

Formula

a(n) = A323901(n) - A002487(n) = A002487(A163511(n)) - A002487(n).
a(2^n) = 0 for all n >= 0.

A355090 Square array A(n, k), n >= 0, k > 0, read by antidiagonals upwards; A(n, k) is the unique m such that n/k = fusc(m)/fusc(m+1) (where fusc is Stern's diatomic series A002487).

Original entry on oeis.org

0, 1, 0, 3, 2, 0, 7, 1, 4, 0, 15, 5, 6, 8, 0, 31, 3, 1, 2, 16, 0, 63, 11, 9, 14, 12, 32, 0, 127, 7, 13, 1, 10, 4, 64, 0, 255, 23, 3, 17, 30, 2, 24, 128, 0, 511, 15, 19, 5, 1, 6, 28, 8, 256, 0, 1023, 47, 27, 29, 33, 62, 18, 20, 48, 512, 0, 2047, 31, 7, 3, 25, 1, 22, 2, 4, 16, 1024, 0
Offset: 0

Views

Author

Rémy Sigrist, Jun 18 2022

Keywords

Comments

The binary expansion of A(n, k) encodes the position of n/k (> 0) in the Calkin-Wilf tree.

Examples

			Square array A(n, k) begins:
  n\k|      1    2    3    4    5    6    7    8    9    10    11    12
  ---+-----------------------------------------------------------------
    0|      0    0    0    0    0    0    0    0    0     0     0     0
    1|      1    2    4    8   16   32   64  128  256   512  1024  2048
    2|      3    1    6    2   12    4   24    8   48    16    96    32
    3|      7    5    1   14   10    2   28   20    4    56    40     8
    4|     15    3    9    1   30    6   18    2   60    12    36     4
    5|     31   11   13   17    1   62   22   26   34     2   124    44
    6|     63    7    3    5   33    1  126   14    6    10    66     2
    7|    127   23   19   29   25   65    1  254   46    38    58    50
    8|    255   15   27    3   21    9  129    1  510    30    54     6
    9|    511   47    7   35   61    5   49  257    1  1022    94    14
   10|   1023   31   39   11    3   13   57   17  513     1  2046    62
   11|   2047   95   55   59   67  125   37   41   97  1025     1  4094
   12|   4095   63   15    7   51    3   45    5    9    33  2049     1
		

Crossrefs

Programs

  • PARI
    A(x,y) = { if (x==0, 0, my (v=0,t=1,a=0,b=1,c=1,d=0); while (1, my (m=a+c, n=b+d); if (x*n==y*m, return (t+v), x*n
    				

Formula

A(m*n, m*k) = A(n, k) for any m > 0.
A(k, n) = A054429(A(n, k)) for any n, k > 0.
A(0, k) = 0.
A(1, k) = 2^(k-1).
A(n, 1) = 2^n - 1.
A(n, n+1) = A000918(n+1).
A(A002487(n), A002487(n+1)) = n.
Previous Showing 71-80 of 384 results. Next