cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-32 of 32 results.

A108413 Expansion of (1+x+5x^2+2x^3) / (1-4x^2+x^4).

Original entry on oeis.org

1, 1, 1, -2, -5, 7, 19, -26, -71, 97, 265, -362, -989, 1351, 3691, -5042, -13775, 18817, 51409, -70226, -191861, 262087, 716035, -978122, -2672279, 3650401, 9973081, -13623482, -37220045, 50843527, 138907099, -189750626, -518408351, 708158977, 1934726305
Offset: 0

Views

Author

Ralf Stephan, Jun 05 2005

Keywords

Crossrefs

Unsigned values are in A002531.

Programs

  • Mathematica
    a[ n_] := If[n<0, a[2-n], SeriesCoefficient[(1 + x + 5*x^2 + 2*x^3) / (1 + 4*x^2 + x^4), {x, 0, n}]]; (* Michael Somos, Sep 23 2024 *)
  • PARI
    Vec((1 + x + 5*x^2 + 2*x^3) / (1 + 4*x^2 + x^4) + O(x^40)) \\ Colin Barker, Sep 07 2017
    
  • PARI
    {a(n) = if(n<0, n=2-n); polcoeff( (1 + x + 5*x^2 + 2*x^3) / (1 + 4*x^2 + x^4) + x*O(x^n), n)}; /* Michael Somos, Sep 23 2024 */

Formula

a(0)=a(1)=a(2)=1, a(n)*a(n+3) - a(n+1)*a(n+2) = -3.
a(n) = -4*a(n-2) - a(n-4) for n>3. - Colin Barker, Sep 07 2017

A109731 a(n) = - 4*a(n-2) - a(n-4), a(0) = 1, a(1) = -4, a(2) = -6, a(3) = 15.

Original entry on oeis.org

1, -4, -6, 15, 23, -56, -86, 209, 321, -780, -1198, 2911, 4471, -10864, -16686, 40545, 62273, -151316, -232406, 564719, 867351, -2107560, -3236998, 7865521, 12080641, -29354524, -45085566, 109552575, 168261623, -408855776
Offset: 0

Views

Author

Creighton Dement, Aug 09 2005

Keywords

Comments

Sequence A002530 and A002531 are also generated by the floretion given in the program code.

Crossrefs

Programs

  • Maple
    Floretion Algebra Multiplication Program, FAMP Code: 1lestesseq[A*B] with A = + .25'i + .25i' + 'ij' + .25'jk' + .25'kj' and B = + j' + k' + 'ii'.
  • Mathematica
    LinearRecurrence[{0,-4,0,-1},{1,-4,-6,15},40] (* Harvey P. Dale, Mar 05 2013 *)

Formula

a(2n) = ((-1)^n)*A054491(n), a(2n+1) = ((-1)^n+1)*A001353(n+1). G.f. (1-4*x-2*x^2-x^3)/(x^4+4*x^2+1)
Previous Showing 31-32 of 32 results.