cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-24 of 24 results.

A271836 Decimal expansion of 3^(1/3) / 2^(1/6).

Original entry on oeis.org

1, 2, 8, 4, 8, 9, 8, 2, 9, 3, 4, 2, 5, 3, 2, 5, 2, 9, 5, 6, 7, 1, 6, 3, 3, 1, 2, 0, 0, 9, 5, 6, 6, 9, 8, 3, 8, 0, 0, 9, 2, 8, 3, 1, 4, 7, 9, 8, 6, 0, 9, 5, 5, 3, 0, 4, 3, 5, 0, 6, 1, 5, 3, 0, 8, 1, 8, 8, 9, 1, 5, 1, 3, 5, 9, 3, 0, 2, 4, 1, 6, 9, 4, 0, 0, 9, 1, 8, 5, 7, 9, 8, 3, 1, 8, 1, 4
Offset: 1

Views

Author

Wesley Ivan Hurt, Apr 15 2016

Keywords

Comments

Used in a formula for a regular octahedron, a = 3^(1/3)/2^(1/6) * V^(1/3), where a is the edge length and V^(1/3) is the cube root of the volume.
An algebraic number of degree 6 and denominator 2; minimal polynomial is 2x^6 - 9. - Charles R Greathouse IV, Apr 18 2016

Examples

			1.2848982934253252956716...
		

Crossrefs

Programs

  • Maple
    Digits:=100: evalf(3^(1/3)/2^(1/6));
  • Mathematica
    RealDigits[N[3^(1/3)/2^(1/6), 100]]
  • PARI
    3^(1/3) / 2^(1/6) \\ Altug Alkan, Apr 15 2016
    
  • PARI
    sqrtn(9/2,6) \\ Charles R Greathouse IV, Apr 18 2016

Formula

Equals A002581 / A010768.

A307513 Beatty sequence for 1/log(2).

Original entry on oeis.org

1, 2, 4, 5, 7, 8, 10, 11, 12, 14, 15, 17, 18, 20, 21, 23, 24, 25, 27, 28, 30, 31, 33, 34, 36, 37, 38, 40, 41, 43, 44, 46, 47, 49, 50, 51, 53, 54, 56, 57, 59, 60, 62, 63, 64, 66, 67, 69, 70, 72, 73, 75, 76, 77, 79, 80, 82, 83, 85, 86, 88, 89, 90, 92, 93, 95, 96, 98, 99, 100, 102, 103, 105, 106, 108, 109, 111, 112, 113, 115
Offset: 1

Views

Author

R. J. Mathar, Apr 12 2019

Keywords

Comments

Very similar to A059539 because A002581 is close to A007525.

Crossrefs

Cf. A007525.

Formula

a(n) = floor(n*A007525).
A166986(n) = 2*a(n+2)-4.

A337840 a(n) is the decimal place of the start of the first occurrence of n in the decimal expansion of n^(1/n).

Original entry on oeis.org

0, 4, 10, 1, 38, 6, 9, 4, 12, 17, 26, 0, 264, 144, 107, 101, 101, 4, 78, 68, 36, 86, 11, 17, 147, 151, 205, 50, 55, 26, 307, 88, 94, 180, 177, 61, 113, 244, 280, 37, 110, 38, 285, 101, 124, 223, 243, 25, 86, 116, 66, 77, 146, 283, 3, 60, 20, 82, 27, 146, 82, 140
Offset: 1

Views

Author

William Phoenix Marcum, Sep 25 2020

Keywords

Comments

Does a(n) exist for all n? Some relatively large values: a(1021) = 67714, a(1111) = 64946. - Chai Wah Wu, Oct 07 2020

Examples

			For n = 1, 1^(1/1) = 1.0000000, so a(1) is 0.
For n = 12, 12^(1/12) ~= 1.2300755, so a(12) = 0.
		

Crossrefs

Cf. A177715.
Decimal expansions of some n^(1/n): A002193, A002581, A005534, A011215, A011231, A011247, A011263, A011279, A011295, A011311, A011327, A011343, A011359.

Programs

  • Mathematica
    max = 3000; a[n_] := SequencePosition[RealDigits[n^(1/n), 10, max][[1]], IntegerDigits[n]][[1, 1]] - 1; Array[a, 100] (* Amiram Eldar, Sep 25 2020 *)
  • PARI
    a(n) = {if (n==1, 0, my(p=10000); default(realprecision, p+1); my(x = floor(10^p*n^(1/n)), d = digits(x), nb = #Str(n)); for(k=1, #d-nb+1, my(v=vector(nb, i, d[k+i-1])); if (fromdigits(v) == n, return(k-1));); error("not found"););} \\ Michel Marcus, Sep 30 2020
    
  • Python
    import gmpy2
    from gmpy2 import mpfr, digits, root
    gmpy2.get_context().precision=10**5
    def A337840(n): # increase precision if -1 is returned
        return digits(root(mpfr(n),n))[0].find(str(n)) # Chai Wah Wu, Oct 07 2020

Extensions

More terms from Amiram Eldar, Sep 25 2020

A384307 Decimal expansion of sqrt(6/Pi)*Gamma(2/3)/3^(1/3).

Original entry on oeis.org

1, 2, 9, 7, 5, 2, 8, 0, 7, 1, 1, 4, 0, 3, 7, 5, 0, 6, 5, 0, 6, 0, 1, 2, 2, 2, 7, 4, 0, 9, 0, 9, 2, 8, 6, 2, 9, 6, 3, 8, 8, 0, 9, 0, 2, 9, 1, 2, 9, 9, 7, 5, 6, 9, 8, 2, 3, 9, 6, 4, 2, 4, 1, 5, 1, 3, 4, 1, 1, 8, 0, 3, 9, 4, 1, 0, 5, 9, 9, 5, 8, 5, 8, 7, 6, 0, 5, 4, 2, 0, 2, 7, 4, 9, 0, 4, 8, 1, 3, 3
Offset: 1

Views

Author

Stefano Spezia, May 25 2025

Keywords

Examples

			1.2975280711403750650601222740909286296388090291...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Sqrt[6/Pi]Gamma[2/3]/3^(1/3),10,100][[1]]

Formula

Equals sqrt(A132696)*A073006/A002581.
Previous Showing 21-24 of 24 results.