A282997 Primes of the form (p^2 + q^2)/2 such that |q^2 - p^2| is square, where p and q are prime.
17, 97, 16561, 89041, 2579199841, 3497992081, 5645806321, 21103207681, 428888025121, 686770904161, 2726023770721, 4017427557361, 6831989588161, 6933052766641, 10138513506001, 19387278797041, 23452359542401, 35287577206801, 40057354132561, 62093498771041, 64116963608881
Offset: 1
Keywords
Examples
17 = (3^2 + 5^2)/2 and 5^2 - 3^2 = 4^2.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 (terms 1..59 from Robert G. Wilson v)
Programs
-
Mathematica
lst = {}; a = 2; While[a < 2501, b = Mod[a, 2] + 1; While[b < a, If[ PrimeQ[a^4 + b^4] && PrimeOmega[a^4 - b^4] == 2, AppendTo[lst, (a^4 + b^4)]]; b += 2]; a++]; lst (* Robert G. Wilson v, Feb 27 2017 *)
-
PARI
list(lim)=my(v=List(),t,n); while((t=n++^4+(n+1)^4)<=lim, if(isprime(t) && isprime(n^2+(n+1)^2) && isprime(2*n+1), listput(v,t))); Vec(v) \\ Charles R Greathouse IV, Feb 26 2017
Extensions
a(11) onward from Robert G. Wilson v, Feb 26 2017
Comments