cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-15 of 15 results.

A002712 Number of unrooted triangulations of a disk that have reflection symmetry with n interior nodes and 3 nodes on the boundary.

Original entry on oeis.org

1, 1, 1, 3, 8, 23, 68, 215, 680, 2226, 7327, 24607, 83060, 284046, 975950, 3383343, 11778308, 41269252, 145131502, 512881550, 1818259952, 6470758289, 23091680690, 82659905947, 296605398856, 1067012168350, 3846553544904, 13896522968160, 50296815014780, 182378110257354, 662384549806938
Offset: 0

Views

Author

Keywords

Comments

These are also called [n,0]-triangulations.

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column k=0 of A169809.

Programs

  • Maple
    Dc := proc(n,m) 2*(2*m+3)!*(4*n+2*m+1)!/m!/(m+2)!/n!/(3*n+2*m+3)! ; end:
    A000260 := proc(n) Dc(n,0) ; end:
    Dx2 := proc(nmax) add( A000260(n)*x^(2*n),n=0..nmax) ; end:
    o := 20: Order := 2*o-1 : j := solve( J0=1+x*J0+x^2*J0*(1+x*J0/2)*series(J0^2-Dx2(o),x=0,2*o-1),J0) ;
    for n from 0 to 2*o-2 do printf("%d,",coeftayl(j,x=0,n)) ; od: # R. J. Mathar, Oct 29 2008
  • Mathematica
    seq[m_] := Module[{q}, q = Sum[x^(2n) Binomial[4n+2, n+1]/ ((2n+1)(3n+2)), {n, 0, Quotient[m, 2]}]; p = 1+O[x]; Do[p = 1 + x*p + x^2*p*(1+x*p/2)(p^2-q), {n, 1, m}]; CoefficientList[p, x]];
    seq[30] (* Jean-François Alcover, Apr 25 2023, after Andrew Howroyd *)
  • PARI
    seq(n)={my(q=sum(n=0, n\2, x^(2*n)*binomial(4*n+2, n+1)/((2*n+1)*(3*n+2))), p=1+O(x)); for(n=1, n, p = 1 + x*p + x^2*p*(1 + x*p/2)*(p^2 - q)); Vec(p)} \\ Andrew Howroyd, Feb 24 2021

Extensions

More terms from R. J. Mathar, Oct 29 2008
Name clarified and terms a(27) and beyond from Andrew Howroyd, Feb 24 2021

A005498 Triangulations of the disk G_{2,n}.

Original entry on oeis.org

1, 6, 21, 88, 330, 1302, 5005, 19504, 75582, 294140, 1144066, 4458192, 17383860, 67866918, 265182525, 1037169760, 4059928950, 15905412468, 62359143990, 244662838160, 960566918220, 3773656396796, 14833897694226, 58343359313568, 229591913401900, 903936171565752, 3560597348629860
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row n=2 of A262586.

Programs

Extensions

More terms from R. J. Mathar, Mar 30 2012
a(25) onwards from Andrew Howroyd, Nov 23 2024

A005499 Triangulations of the disk G_{3,n}.

Original entry on oeis.org

5, 26, 119, 538, 2310, 9882, 41715, 175088, 730626, 3037510, 12584726, 52003792, 214401024, 882233898, 3624161175, 14865947668, 60898934250, 249184153548, 1018532686314, 4159265561360, 16970015555220, 69183689403686, 281844056190294, 1147419353238816, 4668368905854840, 18982659409726792
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Row n=3 of A262586.

Programs

Extensions

a(22) onwards from Andrew Howroyd, Nov 23 2024

A253882 Number of 3-connected planar triangulations of the sphere with n vertices up to orientation preserving isomorphisms.

Original entry on oeis.org

1, 1, 2, 6, 17, 73, 389, 2274, 14502, 97033, 672781, 4792530, 34911786, 259106122, 1954315346, 14949368524, 115784496932, 906736988527, 7171613842488, 57231089062625, 460428456484557, 3731572377382341, 30447133566946517, 249968326771680542, 2063931874299323140
Offset: 4

Views

Author

Danny Rorabaugh, Feb 27 2015

Keywords

Crossrefs

Cf. A000109 (full automorphism group), A000260 (rooted at an edge), A000944, A002709 (with a distinguished face).

Programs

  • PARI
    a(n)={if(n<3, 0, (2*binomial(4*(n-3)+1, n-3)/((n-2)*(3*n-7))
      + 3*sumdiv(n-2, d, if(d>=2, my(s=(n-2)/d); eulerphi(d)*binomial(4*s,s))/4)
      + if(n%2==1, my(s=(n-3)/2); 3*binomial(4*s,s)*(2*s+1)/(3*s+1))
      + if(n%3==1, my(s=(n-4)/3); 8*binomial(4*s,s)*(4*s+1)/(3*s+1))
      + if(n%3==0, my(s=(n-3)/3); 2*binomial(4*s,s)) )/(6*(n-2)))} \\ Andrew Howroyd, Mar 02 2021

Extensions

Name clarified and terms a(24) and beyond from Andrew Howroyd, Mar 02 2021

A005497 Erroneous version of A210696.

Original entry on oeis.org

1, 2, 5, 16, 48, 164, 599, 1952
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Previous Showing 11-15 of 15 results.