cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 23 results. Next

A198683 Number of distinct values taken by i^i^...^i (with n i's and parentheses inserted in all possible ways) where i = sqrt(-1) and ^ denotes the principal value of the exponential function.

Original entry on oeis.org

1, 1, 2, 3, 7, 15, 34, 77, 187, 462, 1152
Offset: 1

Views

Author

Vladimir Reshetnikov, Oct 28 2011

Keywords

Comments

There are C(n-1) ways of inserting the parentheses (where C is a Catalan number, A000108), but not all arrangements produce different values.
At n=10, the expression i^(i^(((i^i)^i)^(i^((i^i)^(i^i))))) evaluates to a large complex number, C = -6.795047376...*10^34 - i*6.044219499...*10^34; as a result, i^C, which arises at n=11, is very large, having a magnitude of e^((-Pi/2)*(-6.044219499...*10^34)) = 4.1007...*10^41232950809707420597749203381002924. - Jon E. Schoenfield, Nov 21 2015
Note that if a is a REAL positive number, the number of different values of a^a^...^a with n a's is at most A000081(n). But this relies on the identity (x^y)^z = (x^z)^y = x^(yz), which is not always true for complex numbers with the principal value of the power function. Thus if Y = ((i^i)^i)^i, we have (i^i)^Y / (i^Y)^i = exp(-2 Pi). - Robert Israel, Nov 27 2015 [So for the present sequence, we know a(n) <= A000108(n-1), but we do not know that a(n) <= A000081(n). - N. J. A. Sloane, Nov 28 2015]

Examples

			a(1) = 1: there is one value, i.
a(2) = 1: there is one value, i^i = exp(i Pi / 2)^i = exp(-Pi/2) = 0.2079...
a(3) = 2: there are two values: (i^i)^i = i^(-1) = 1/i = -i and i^(i^i) = i^0.2079... = exp(0.2079... i Pi / 2) = 0.9472... + 0.3208... i.
a(4) = 3: there are 5 possible parenthesizations but they give only 3 distinct values: i^(i^(i^i)), i^((i^i)^i) = ((i^i)^i)^i, (i^i)^(i^i) = (i^(i^i))^i.
		

Crossrefs

Programs

  • Mathematica
    iParens[1] = {I}; iParens[n_] := iParens[n] = Union[Flatten[Table[Outer[Power, iParens[k], iParens[n - k]], {k, n - 1}]], SameTest -> Equal]; Table[Length[iParens[n]], {n, 10}]

Extensions

a(11) and a(12) (unconfirmed) from Alonso del Arte, Nov 17 2011
a(12) is said to be either 2919 or 2926. The value will not be included in the data section until it has been confirmed. - N. J. A. Sloane, Nov 26 2015

A199205 Number of distinct values taken by 4th derivative of x^x^...^x (with n x's and parentheses inserted in all possible ways) at x=1.

Original entry on oeis.org

1, 1, 2, 4, 9, 17, 30, 50, 77, 113, 156, 212, 279, 355, 447, 560, 684, 822, 985, 1171, 1375, 1599, 1856, 2134, 2445, 2769, 3125, 3519, 3939, 4376, 4857, 5372, 5914, 6484, 7083, 7717, 8411, 9130, 9882, 10683, 11524, 12393
Offset: 1

Views

Author

Alois P. Heinz, Nov 03 2011

Keywords

Examples

			a(5) = 9 because the A000108(4) = 14 possible parenthesizations of x^x^x^x^x lead to 9 different values of the 4th derivative at x=1: (x^(x^(x^(x^x)))) -> 56; (x^(x^((x^x)^x))) -> 80; (x^((x^(x^x))^x)), (x^((x^x)^(x^x))) -> 104; ((x^x)^(x^(x^x))), ((x^(x^(x^x)))^x) -> 124; ((x^(x^x))^(x^x)) -> 148; (x^(((x^x)^x)^x)) -> 152; ((x^x)^((x^x)^x)), ((x^((x^x)^x))^x) -> 172; (((x^x)^x)^(x^x)), (((x^(x^x))^x)^x), (((x^x)^(x^x))^x) -> 228; ((((x^x)^x)^x)^x) -> 344.
		

Crossrefs

Cf. A000081 (distinct functions), A000108 (parenthesizations), A000012 (first derivatives), A028310 (2nd derivatives), A199085 (3rd derivatives), A199296 (5th derivatives), A002845, A003018, A003019, A145545, A145546, A145547, A145548, A145549, A145550, A082499, A196244, A198683, A215703, A215834. Column k=4 of A216368.

Programs

  • Maple
    f:= proc(n) option remember;
          `if`(n=1, {[0, 0, 0]},
                    {seq(seq(seq( [2+g[1], 3*(1 +g[1] +h[1]) +g[2],
                     8 +12*g[1] +6*h[1]*(1+g[1]) +4*(g[2]+h[2])+g[3]],
                     h=f(n-j)), g=f(j)), j=1..n-1)})
        end:
    a:= n-> nops(map(x-> x[3], f(n))):
    seq(a(n), n=1..20);
  • Mathematica
    f[n_] := f[n] = If[n == 1, {{0, 0, 0}}, Union @ Flatten[#, 3]& @ {Table[ Table[Table[{2 + g[[1]], 3*(1 + g[[1]] + h[[1]]) + g[[2]], 8 + 12*g[[1]] + 6*h[[1]]*(1 + g[[1]]) + 4*(g[[2]] + h[[2]]) + g[[3]]}, {h, f[n - j]}], {g, f[j]}], {j, 1, n - 1}]}];
    a[n_] := Length @ Union @ (#[[3]]& /@ f[n]);
    Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 1, 32}] (* Jean-François Alcover, Jun 08 2018, after Alois P. Heinz *)

Extensions

a(41)-a(42) from Alois P. Heinz, Jun 01 2015

A199296 Number of distinct values taken by 5th derivative of x^x^...^x (with n x's and parentheses inserted in all possible ways) at x=1.

Original entry on oeis.org

1, 1, 2, 4, 9, 20, 45, 92, 182, 342, 601, 982, 1499, 2169, 2970, 3994, 5297, 6834, 8635, 10714, 13121, 16104, 19674, 23868, 28453, 33637, 39630, 46730
Offset: 1

Views

Author

Alois P. Heinz, Nov 04 2011

Keywords

Examples

			a(4) = 4 because the A000108(3) = 5 possible parenthesizations of x^x^x^x lead to 4 different values of the 5th derivative at x=1: (x^(x^(x^x))) -> 360; (x^((x^x)^x)) -> 590; ((x^(x^x))^x), ((x^x)^(x^x)) -> 650; (((x^x)^x)^x) -> 1110.
		

Crossrefs

Cf. A000081 (distinct functions), A000108 (parenthesizations), A000012 (first derivatives), A028310 (2nd derivatives), A199085 (3rd derivatives), A199205 (4th derivatives), A002845, A003018, A003019, A145545, A145546, A145547, A145548, A145549, A145550, A082499, A196244, A198683, A215703, A215835. Column k=5 of A216368.

Programs

  • Maple
    f:= proc(n) option remember;
          `if`(n=1, {[0, 0, 0, 0]},
                {seq(seq(seq([2+g[1], 3*(1 +g[1] +h[1]) +g[2],
                 8 +12*g[1] +6*h[1]*(1+g[1]) +4*(g[2]+h[2])+g[3],
                 10+50*h[1]+10*h[2]+5*h[3]+(30+30*h[1]+10*h[2]
                 +15*g[1])*g[1]+(20+10*h[1])*g[2]+5*g[3]+g[4]],
                  h=f(n-j)), g=f(j)), j=1..n-1)})
        end:
    a:= n-> nops(map(x-> x[4], f(n))):
    seq(a(n), n=1..20);
  • Mathematica
    f[n_] := f[n] = If[n == 1, {{0, 0, 0, 0}}, Union@Flatten[#, 3]& @ {Table[ Table[Table[{2 + g[[1]], 3*(1 + g[[1]] + h[[1]]) + g[[2]], 8 + 12*g[[1]] + 6*h[[1]]*(1 + g[[1]]) + 4*(g[[2]] + h[[2]]) + g[[3]], 10 + 50*h[[1]] + 10*h[[2]] + 5*h[[3]] + (30 + 30*h[[1]] + 10*h[[2]] + 15*g[[1]])*g[[1]] + (20 + 10*h[[1]])*g[[2]] + 5*g[[3]] + g[[4]]}, {h, f[n - j]}], {g, f[j]}], {j, 1, n - 1}]}];
    a[n_] := Length@Union@(#[[4]]& /@ f[n]);
    Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 1, 24}] (* Jean-François Alcover, Sep 01 2023, after Alois P. Heinz *)

A196244 Number of distinct values taken by r^r^...^r where r=1/2 (with n r's and parentheses inserted in all possible ways).

Original entry on oeis.org

1, 1, 2, 4, 9, 20, 47, 111, 271, 670, 1685, 4295, 11074, 28824
Offset: 1

Views

Author

Vladimir Reshetnikov, Oct 27 2011

Keywords

Crossrefs

Programs

  • Mathematica
    f[1] = {1/2}; f[n_] := f[n] = Union[Flatten[Table[Outer[Power, f[k], f[n - k]], {k, n - 1}]], SameTest -> Equal]; Table[Length[f[n]], {n, 1, 10}] (* Vladimir Reshetnikov, Nov 01 2011 *)

Extensions

a(13)-a(14) from Alois P. Heinz, Feb 20 2013

A199883 Number of distinct values taken by 6th derivative of x^x^...^x (with n x's and parentheses inserted in all possible ways) at x=1.

Original entry on oeis.org

1, 1, 2, 4, 9, 20, 48, 113, 262, 591, 1263, 2505, 4764, 8479, 14285, 22871, 35316, 52755, 76517, 107826, 148914, 202715, 270622
Offset: 1

Views

Author

Alois P. Heinz, Nov 11 2011

Keywords

Examples

			a(4) = 4 because the A000108(3) = 5 possible parenthesizations of x^x^x^x lead to 4 different values of the 6th derivative at x=1: (x^(x^(x^x))) -> 2934; ((x^x)^(x^x)), ((x^(x^x))^x) -> 4908; (x^((x^x)^x)) -> 5034; (((x^x)^x)^x) -> 8322.
		

Crossrefs

Cf. A000081 (distinct functions), A000108 (parenthesizations), A000012 (first derivatives), A028310 (2nd derivatives), A199085 (3rd derivatives), A199205 (4th derivatives), A199296 (5th derivatives), A002845, A003018, A003019, A145545, A145546, A145547, A145548, A145549, A145550, A082499, A196244, A198683, A215703, A215836. Column k=6 of A216368.

Programs

  • Maple
    f:= proc(n) option remember;
          `if`(n=1, {[0, 0, 0, 0, 0]},
                    {seq(seq(seq([2+g[1], 3*(1 +g[1] +h[1]) +g[2],
                     8 +12*g[1] +6*h[1]*(1+g[1]) +4*(g[2]+h[2])+g[3],
                     10+50*h[1]+10*h[2]+5*h[3]+(30+30*h[1]+10*h[2]
                     +15*g[1])*g[1]+(20+10*h[1])*g[2]+5*g[3]+g[4],
                     45*h[1]*g[1]^2+(120+60*h[2]+15*h[3]+60*g[2]+
                     270*h[1])*g[1]+54+15*h[3]+30*g[3]+6*g[4]+
                     60*h[1]*g[2]+15*h[1]*g[3]+30*h[1]+ 20*h[2]*g[2]+
                     100*h[2]+90*h[1]^2+g[5]+60*g[2]+6*h[4]],
                     h=f(n-j)), g=f(j)), j=1..n-1)})
        end:
    a:= n-> nops(map(x-> x[5], f(n))):
    seq(a(n), n=1..15);

Extensions

a(22)-a(23) from Alois P. Heinz, Sep 26 2014

A255170 a(n) = A087803(n) - n + 1.

Original entry on oeis.org

1, 1, 2, 5, 13, 32, 79, 193, 478, 1196, 3037, 7802, 20287, 53259, 141069, 376449, 1011295, 2732453, 7421128, 20247355, 55469186, 152524366, 420807220, 1164532203, 3231706847, 8991343356, 25075077684, 70082143952, 196268698259, 550695545855, 1547867058852
Offset: 1

Views

Author

Vladimir Reshetnikov, Feb 15 2015

Keywords

Comments

Conjectured extension of A199812: number of distinct values taken by w^w^...^w (with n w's and parentheses inserted in all possible ways) where w is the first transfinite ordinal omega. So far all known terms of A199812 (that is, 20 of them) coincide with this sequence. It is conjectured that A199812 is actually identical to this sequence, but it remains unproved, and is computationally difficult to check for n > 20.

Examples

			a(4) = 1 - 4 + Sum_{k=1..4} A000081(k) = 1 - 4 + 1 + 1 + 2 + 4 = 5.
a(5) = 1 - 5 + Sum_{k=1..5} A000081(k) = 1 - 5 + 1 + 1 + 2 + 4 + 9 = 13.
		

Crossrefs

Cf. A199812 (conjectured to be identical), A087803, A000081, A174145 (2nd differences), A005348, A002845, A198683, A187770, A051491.

Programs

  • Maple
    with(numtheory):
    t:= proc(n) option remember; `if`(n<2, n, (add(add(
          d*t(d), d=divisors(j))*t(n-j), j=1..n-1))/(n-1))
        end:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<2, 0,
          add(b(n-i*j, i-1)*binomial(t(i)+j-1, j), j=0..n/i)))
        end:
    a:= proc(n) option remember; `if`(n<3, 1,
          b(n-1$2) +2*a(n-1) -a(n-2))
        end:
    seq(a(n), n=1..40);  # Alois P. Heinz, Feb 17 2015
  • Mathematica
    t[1] = a[1] = 1; t[n_] := t[n] = Sum[k t[k] t[n - k m]/(n-1), {k, n}, {m, (n-1)/k}]; a[n_] := a[n] = a[n-1] + t[n] - 1; Table[a[n], {n, 40}] (* Vladimir Reshetnikov, Aug 12 2016 *)

Formula

a(n) = 1 - n + Sum_{k=1..n} A000081(k).
Recurrence: a(1) = 1, a(n+1) = a(n) + A000081(n+1) - 1.
Recurrence: a(1) = a(2) = 1, a(n) = A174145(n-1) + 2*a(n-1) - a(n-2).
Asymptotics: a(n) ~ c * d^n / n^(3/2), where c = A187770 / (1 - 1 / A051491) = 0.664861... and d = A051491 = 2.955765...

Extensions

Simpler definition and program in terms of A000081. - Vladimir Reshetnikov, Aug 12 2016
Renamed. - Vladimir Reshetnikov, Aug 23 2016

A199812 Number of distinct values taken by w^w^...^w (with n w's and parentheses inserted in all possible ways) where w is the first transfinite ordinal omega.

Original entry on oeis.org

1, 1, 2, 5, 13, 32, 79, 193, 478, 1196, 3037, 7802, 20287, 53259, 141069, 376449, 1011295, 2732453, 7421128, 20247355
Offset: 1

Views

Author

Vladimir Reshetnikov, Nov 10 2011

Keywords

Comments

Any transfinite ordinal can be used instead of omega, yielding the same sequence.
It appears that 2nd differences of this sequence give A174145 (starting from offset 2).
Conjectured extension of this sequence is given by A255170.

Examples

			For n=5 there are 14 possible parenthesizations, but only 13 of them produce distinct ordinals: (((w^w)^w)^w)^w < ((w^w)^w)^(w^w) < ((w^w)^(w^w))^w < ((w^(w^w))^w)^w < (w^(w^w))^(w^w) < (w^w)^((w^w)^w) < (w^((w^w)^w))^w < w^(((w^w)^w)^w) < (w^w)^(w^(w^w)) = w^((w^w)^(w^w)) < (w^(w^(w^w)))^w < w^((w^(w^w))^w) < w^(w^((w^w)^w)) < w^(w^(w^(w^w))). So, a(5)=13.
		

Crossrefs

Cf. A000108 (upper bound), A174145 (2nd differences?), A255170 (conjectured extension), A005348, A002845, A198683, A000081 (similar asymptotics), A051491.

Programs

  • Mathematica
    (* Slow exhaustive search *)
    _ \[Precedes] {} = False;
    {} \[Precedes] {} = True;
    {a_ \[Diamond] , __} \[Precedes] {b_ \[Diamond] , __} := a \[Precedes] b /; a =!= b;
    {a_ \[Diamond] m_, _} \[Precedes] {a_ \[Diamond] n_, _} := m < n /; m != n;
    {z_, x___} \[Precedes] {z_, y___} := {x} \[Precedes] {y};
    m_ \[CirclePlus] {} := m;
    {} \[CirclePlus] n_ := n;
    {x___, a_ \[Diamond] m_} \[CirclePlus] {a_ \[Diamond] n_, y___} := {x, a \[Diamond] (m + n), y};
    {x___, a_ \[Diamond] m_} \[CirclePlus] z : {b_ \[Diamond] n_, y___} := If[a \[Precedes] b, {x} \[CirclePlus] z, {x, a \[Diamond] m, b \[Diamond] n, y}];
    {} \[CircleTimes] _ = {};
    _ \[CircleTimes] {} = {};
    {a_ \[Diamond] m_, x___} \[CircleTimes] {b_ \[Diamond] n_} := If[b === {}, {a \[Diamond] (m n), x}, {(a \[CirclePlus] b) \[Diamond] n}];
    x_ \[CircleTimes] {y_, z__} := x \[CircleTimes] {y} \[CirclePlus] x \[CircleTimes] {z};
    f[1] = {{{} \[Diamond] 1}};
    f[n_] := f[n] = Union[Flatten[Table[Outer[#1 \[CircleTimes] {#2 \[Diamond] 1} &, f[k], f[n - k], 1], {k, n - 1}], 2]];
    Table[Length[f[n]], {n, 1, 17}]

Formula

Conjecture: a(n) ~ c * d^n * n^(-3/2), where c = 0.664861... and d = A051491 = 2.955765... - Vladimir Reshetnikov, Aug 11 2016

Extensions

a(18)-a(20) from Robert G. Wilson v, Sep 15 2012

A215796 Number of distinct values taken by 7th derivative of x^x^...^x (with n x's and parentheses inserted in all possible ways) at x=1.

Original entry on oeis.org

1, 1, 2, 4, 9, 20, 48, 115, 283, 691, 1681, 3988, 9241, 20681, 44217, 89644
Offset: 1

Views

Author

Alois P. Heinz, Aug 24 2012

Keywords

Examples

			a(4) = 4 because the A000108(3) = 5 possible parenthesizations of x^x^x^x lead to 4 different values of the 7th derivative at x=1: (x^(x^(x^x))) -> 26054; ((x^x)^(x^x)), ((x^(x^x))^x) -> 41090; (x^((x^x)^x)) -> 47110; (((x^x)^x)^x) -> 70098.
		

Crossrefs

Column k=7 of A216368.
Cf. A000081 (distinct functions), A000108 (parenthesizations), A000012 (first derivatives), A028310 (2nd derivatives), A199085 (3rd derivatives), A199205 (4th derivatives), A199296 (5th derivatives), A199883 (6th derivatives), A002845, A003018, A003019, A145545, A145546, A145547, A145548, A145549, A145550, A082499, A196244, A198683, A215703, A215837.

Programs

  • Maple
    T:= proc(n) T(n):=`if`(n=1, [x], map(h-> x^h, g(n-1$2))) end:
    g:= proc(n, i) option remember; `if`(i=1, [x^n], [seq(seq(
          seq(mul(T(i)[w[t]-t+1], t=1..j)*v, v=g(n-i*j, i-1)), w=
          combinat[choose]([$1..nops(T(i))+j-1], j)), j=0..n/i)])
        end:
    f:= proc() local i, l; i, l:= 0, []; proc(n) while n>
          nops(l) do i:= i+1; l:= [l[], T(i)[]] od; l[n] end
        end():
    a:= n-> nops({map(f-> 7!*coeff(series(subs(x=x+1, f), x, 8), x, 7), T(n))[]}):
    seq(a(n), n=1..12);

A215971 Number of distinct values taken by 8th derivative of x^x^...^x (with n x's and parentheses inserted in all possible ways) at x=1.

Original entry on oeis.org

1, 1, 2, 4, 9, 20, 48, 115, 286, 717, 1815, 4574, 11505, 28546, 69705, 166010
Offset: 1

Views

Author

Alois P. Heinz, Aug 29 2012

Keywords

Examples

			a(4) = 4 because the A000108(3) = 5 possible parenthesizations of x^x^x^x lead to 4 different values of the 8th derivative at x=1: (x^(x^(x^x))) -> 269128; ((x^x)^(x^x)), ((x^(x^x))^x) -> 382520; (x^((x^x)^x)) -> 511216; (((x^x)^x)^x) -> 646272.
		

Crossrefs

Cf. A000081 (distinct functions), A000108 (parenthesizations), A000012 (first derivatives), A028310 (2nd derivatives), A199085 (3rd derivatives), A199205 (4th derivatives), A199296 (5th derivatives), A199883 (6th derivatives), A002845, A003018, A003019, A145545, A145546, A145547, A145548, A145549, A145550, A082499, A196244, A198683, A215703, A215838. Column k=8 of A216368.

Programs

  • Maple
    # load programs from A215703, then:
    a:= n-> nops({map(f-> 8!*coeff(series(subs(x=x+1, f),
                      x, 9), x, 8), T(n))[]}):
    seq(a(n), n=1..10);

A216062 Number of distinct values taken by 9th derivative of x^x^...^x (with n x's and parentheses inserted in all possible ways) at x=1.

Original entry on oeis.org

1, 1, 2, 4, 9, 20, 48, 115, 286, 719, 1838, 4734, 12247, 31617, 81208
Offset: 1

Views

Author

Alois P. Heinz, Aug 31 2012

Keywords

Comments

a(4) = 4 because the A000108(3) = 5 possible parenthesizations of x^x^x^x lead to 4 different values of the 9th derivative at x=1: (x^(x^(x^x))) -> 3010680; ((x^x)^(x^x)), ((x^(x^x))^x) -> 3863808; (x^((x^x)^x)) -> 6019416; (((x^x)^x)^x) -> 6333336.

Crossrefs

Cf. A000081 (distinct functions), A000108 (parenthesizations), A000012 (first derivatives), A028310 (2nd derivatives), A199085 (3rd derivatives), A199205 (4th derivatives), A199296 (5th derivatives), A199883 (6th derivatives), A002845, A003018, A003019, A145545, A145546, A145547, A145548, A145549, A145550, A082499, A196244, A198683, A215703, A215839. Column k=9 of A216368.

Programs

  • Maple
    # load programs from A215703, then:
    a:= n-> nops({map(f-> 9!*coeff(series(subs(x=x+1, f),
                      x, 10), x, 9), T(n))[]}):
    seq(a(n), n=1..11);
Previous Showing 11-20 of 23 results. Next