A291280
Primes p such that p does not divide any term of the Apery-like sequence A125143.
Original entry on oeis.org
2, 5, 7, 11, 13, 19, 29, 41, 47, 61, 67, 71, 73, 89, 97, 101, 103, 131, 137, 139, 149, 157, 163, 167, 173, 179, 181, 193, 197, 199, 211, 223, 227, 229, 233, 241, 251, 257, 263, 269, 281, 283, 293, 317, 331, 347, 349, 359, 367, 373, 379, 383
Offset: 1
For primes that do not divide the terms of the sequences
A000172,
A005258,
A002893,
A081085,
A006077,
A093388,
A125143,
A229111,
A002895,
A290575,
A290576,
A005259 see
A260793,
A291275-
A291284 and
A133370 respectively.
A291281
Primes p such that p does not divide any term of the Apery-like sequence A229111.
Original entry on oeis.org
2, 3, 17, 19, 23, 31, 47, 53, 61, 107, 109, 113, 137, 139, 151, 173, 197, 199, 211, 227, 229, 233, 241, 257, 263, 293, 317, 347, 353, 383, 421, 439, 443, 467, 499, 541, 587, 593, 619, 647, 661, 677, 683, 691, 751, 769, 773, 857, 919
Offset: 1
For primes that do not divide the terms of the sequences
A000172,
A005258,
A002893,
A081085,
A006077,
A093388,
A125143,
A229111,
A002895,
A290575,
A290576,
A005259 see
A260793,
A291275-
A291284 and
A133370 respectively.
A291282
Primes p such that p does not divide any term of the Apery-like sequence A002895.
Original entry on oeis.org
3, 5, 13, 17, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 83, 89, 101, 103, 107, 109, 127, 131, 137, 163, 167, 173, 181, 191, 193, 199, 229, 233, 239, 241, 251, 257, 269, 307, 311, 317, 337, 347, 349, 359, 367, 373, 409, 419, 421, 449, 457
Offset: 1
For primes that do not divide the terms of the sequences
A000172,
A005258,
A002893,
A081085,
A006077,
A093388,
A125143,
A229111,
A002895,
A290575,
A290576,
A005259 see
A260793,
A291275-
A291284 and
A133370 respectively.
A291283
Primes p such that p does not divide any term of the Apery-like sequence A290575.
Original entry on oeis.org
3, 7, 13, 19, 23, 29, 31, 37, 43, 47, 61, 67, 73, 83, 89, 101, 103, 107, 109, 113, 127, 131, 139, 149, 157, 167, 179, 191, 193, 197, 223, 227, 229, 241, 251, 257, 271, 281, 293, 307, 311, 313, 353, 367, 373, 379, 389, 401, 419, 431, 433
Offset: 1
For primes that do not divide the terms of the sequences
A000172,
A005258,
A002893,
A081085,
A006077,
A093388,
A125143,
A229111,
A002895,
A290575,
A290576,
A005259 see
A260793,
A291275-
A291284 and
A133370 respectively.
A327994
a(n) is the constant term in the expansion of (1 + (1+x)*(1+y) + (1+1/x)*(1+1/y) + (1+1/x^2)*(1+1/y^2))^n.
Original entry on oeis.org
1, 4, 22, 157, 1342, 12694, 126601, 1301353, 13647622, 145280776, 1564974682, 17022150688, 186647326849, 2060538384454, 22880172406939, 255336518921572, 2861956399934038, 32201882791307904, 363561893114484868, 4117138703073839926, 46751784944876067562
Offset: 0
-
F[n_] := Expand[(1+(1+x)(1+y) + (1+1/x)(1+1/y) + (1+1/x^2)(1+1/y^2))^n];
a[n_] := SeriesCoefficient[F[n], {x, 0, 0}, {y, 0, 0}]; a /@ Range[0, 20]
A338934
Square array T(i,j) = Sum_{k=0...min(i,j)} C(i,k)*C(j,k)*C(2*k,k) (i>=0,j>=0), read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 3, 1, 1, 5, 5, 1, 1, 7, 15, 7, 1, 1, 9, 31, 31, 9, 1, 1, 11, 53, 93, 53, 11, 1, 1, 13, 81, 213, 213, 81, 13, 1, 1, 15, 115, 411, 639, 411, 115, 15, 1, 1, 17, 155, 707, 1551, 1551, 707, 155, 17, 1, 1, 19, 201, 1121, 3239, 4653, 3239, 1121, 201, 19, 1
Offset: 0
There are T(1,1)*C(2,1)=6 ways to write the vector (1,1,1,1) as a sum of vectors containing two occurrences of the number 1 : (1,1,0,0)+(0,0,1,1), (0,0,1,1)+(1,1,0,0), (1,0,1,0)+(0,1,0,1), (0,1,0,1)+(1,0,1,0), (1,0,0,1)+(0,1,1,0), (0,1,1,0)+(1,0,0,1).
The square array T(i,j) (i >= 0, j >= 0) begins:
1, 1, 1, 1, 1, 1, ...
1, 3, 5, 7, 9, 11, ...
1, 5, 15, 31, 53, 81, ...
1, 7, 31, 93, 213, 411, ...
1, 9, 53, 213, 639, 1551, ...
1, 11, 81, 411, 1551, 4653, ...
...
Central diagonal terms give
A002893.
-
T[i_,j_]:=Sum[Binomial[i,k]Binomial[j,k]Binomial[2k,k],{k,0,Min[i,j]}]; Flatten[Table[T[i-j,j],{i,0,10},{j,0,i}]] (* Stefano Spezia, Nov 17 2020 *)
A349769
a(n) = Sum_{k=0..n} binomial(n,k)^2 * binomial(k,floor(k/2)).
Original entry on oeis.org
1, 2, 7, 31, 143, 686, 3417, 17382, 89791, 470134, 2487593, 13273921, 71341921, 385786298, 2097096263, 11451611919, 62784274623, 345436875758, 1906568766489, 10552637998329, 58556298508449, 325676578717698, 1815140080977303, 10135993961893674
Offset: 0
-
Table[Sum[Binomial[n, k]^2 Binomial[k, Floor[k/2]], {k, 0, n}], {n, 0, 22}]
-
a(n) = sum(k=0, n, binomial(n,k)^2 * binomial(k,k\2)); \\ Michel Marcus, Nov 29 2021
A381199
a(n) = (4*n)!/((n!)^2*(2*n)!)*Sum_{k=0..n} binomial(n,k)^2*binomial(2*k,k).
Original entry on oeis.org
1, 36, 6300, 1718640, 575675100, 216636756336, 87874675224336, 37563969509352000, 16692217815436148700, 7642084994921759382000, 3582530520581922083974800, 1712083670316898167464884800, 831357643152788660610464490000, 409154554816583487288034143528000, 203690783136217174743485058666840000
Offset: 0
-
a[n_]:=(4n)!/((n!)^2*(2n)!)*Sum[Binomial[n,k]^2Binomial[2k,k],{k,0,n}]; Array[a,15,0]
Comments