cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 81-88 of 88 results.

A291280 Primes p such that p does not divide any term of the Apery-like sequence A125143.

Original entry on oeis.org

2, 5, 7, 11, 13, 19, 29, 41, 47, 61, 67, 71, 73, 89, 97, 101, 103, 131, 137, 139, 149, 157, 163, 167, 173, 179, 181, 193, 197, 199, 211, 223, 227, 229, 233, 241, 251, 257, 263, 269, 281, 283, 293, 317, 331, 347, 349, 359, 367, 373, 379, 383
Offset: 1

Views

Author

N. J. A. Sloane, Aug 21 2017

Keywords

Crossrefs

For primes that do not divide the terms of the sequences A000172, A005258, A002893, A081085, A006077, A093388, A125143, A229111, A002895, A290575, A290576, A005259 see A260793, A291275-A291284 and A133370 respectively.

A291281 Primes p such that p does not divide any term of the Apery-like sequence A229111.

Original entry on oeis.org

2, 3, 17, 19, 23, 31, 47, 53, 61, 107, 109, 113, 137, 139, 151, 173, 197, 199, 211, 227, 229, 233, 241, 257, 263, 293, 317, 347, 353, 383, 421, 439, 443, 467, 499, 541, 587, 593, 619, 647, 661, 677, 683, 691, 751, 769, 773, 857, 919
Offset: 1

Views

Author

N. J. A. Sloane, Aug 21 2017

Keywords

Crossrefs

For primes that do not divide the terms of the sequences A000172, A005258, A002893, A081085, A006077, A093388, A125143, A229111, A002895, A290575, A290576, A005259 see A260793, A291275-A291284 and A133370 respectively.

A291282 Primes p such that p does not divide any term of the Apery-like sequence A002895.

Original entry on oeis.org

3, 5, 13, 17, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 83, 89, 101, 103, 107, 109, 127, 131, 137, 163, 167, 173, 181, 191, 193, 199, 229, 233, 239, 241, 251, 257, 269, 307, 311, 317, 337, 347, 349, 359, 367, 373, 409, 419, 421, 449, 457
Offset: 1

Views

Author

N. J. A. Sloane, Aug 21 2017

Keywords

Crossrefs

For primes that do not divide the terms of the sequences A000172, A005258, A002893, A081085, A006077, A093388, A125143, A229111, A002895, A290575, A290576, A005259 see A260793, A291275-A291284 and A133370 respectively.

A291283 Primes p such that p does not divide any term of the Apery-like sequence A290575.

Original entry on oeis.org

3, 7, 13, 19, 23, 29, 31, 37, 43, 47, 61, 67, 73, 83, 89, 101, 103, 107, 109, 113, 127, 131, 139, 149, 157, 167, 179, 191, 193, 197, 223, 227, 229, 241, 251, 257, 271, 281, 293, 307, 311, 313, 353, 367, 373, 379, 389, 401, 419, 431, 433
Offset: 1

Views

Author

N. J. A. Sloane, Aug 21 2017

Keywords

Crossrefs

For primes that do not divide the terms of the sequences A000172, A005258, A002893, A081085, A006077, A093388, A125143, A229111, A002895, A290575, A290576, A005259 see A260793, A291275-A291284 and A133370 respectively.

A327994 a(n) is the constant term in the expansion of (1 + (1+x)*(1+y) + (1+1/x)*(1+1/y) + (1+1/x^2)*(1+1/y^2))^n.

Original entry on oeis.org

1, 4, 22, 157, 1342, 12694, 126601, 1301353, 13647622, 145280776, 1564974682, 17022150688, 186647326849, 2060538384454, 22880172406939, 255336518921572, 2861956399934038, 32201882791307904, 363561893114484868, 4117138703073839926, 46751784944876067562
Offset: 0

Views

Author

Peter Luschny, Oct 28 2019

Keywords

Crossrefs

Cf. A002893.

Programs

  • Mathematica
    F[n_] := Expand[(1+(1+x)(1+y) + (1+1/x)(1+1/y) + (1+1/x^2)(1+1/y^2))^n];
    a[n_] := SeriesCoefficient[F[n], {x, 0, 0}, {y, 0, 0}]; a /@ Range[0, 20]

A338934 Square array T(i,j) = Sum_{k=0...min(i,j)} C(i,k)*C(j,k)*C(2*k,k) (i>=0,j>=0), read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 5, 5, 1, 1, 7, 15, 7, 1, 1, 9, 31, 31, 9, 1, 1, 11, 53, 93, 53, 11, 1, 1, 13, 81, 213, 213, 81, 13, 1, 1, 15, 115, 411, 639, 411, 115, 15, 1, 1, 17, 155, 707, 1551, 1551, 707, 155, 17, 1, 1, 19, 201, 1121, 3239, 4653, 3239, 1121, 201, 19, 1
Offset: 0

Views

Author

Ludovic Schwob, Nov 16 2020

Keywords

Comments

T(i,j)*C(i+j,i) is the number of ways to write the vector (i,i,j,j) as a sum of vectors containing two occurrences of the number 1.
Up to order, the number of different sums is A106255(i+1,j+1).

Examples

			There are T(1,1)*C(2,1)=6 ways to write the vector (1,1,1,1) as a sum of vectors containing two occurrences of the number 1 : (1,1,0,0)+(0,0,1,1), (0,0,1,1)+(1,1,0,0), (1,0,1,0)+(0,1,0,1), (0,1,0,1)+(1,0,1,0), (1,0,0,1)+(0,1,1,0), (0,1,1,0)+(1,0,0,1).
The square array T(i,j) (i >= 0, j >= 0) begins:
  1,  1,  1,   1,    1,    1, ...
  1,  3,  5,   7,    9,   11, ...
  1,  5, 15,  31,   53,   81, ...
  1,  7, 31,  93,  213,  411, ...
  1,  9, 53, 213,  639, 1551, ...
  1, 11, 81, 411, 1551, 4653, ...
  ...
		

Crossrefs

Central diagonal terms give A002893.
Antidiagonal sums give A097893.

Programs

  • Mathematica
    T[i_,j_]:=Sum[Binomial[i,k]Binomial[j,k]Binomial[2k,k],{k,0,Min[i,j]}]; Flatten[Table[T[i-j,j],{i,0,10},{j,0,i}]] (* Stefano Spezia, Nov 17 2020 *)

Extensions

More terms from Stefano Spezia, Nov 17 2020

A349769 a(n) = Sum_{k=0..n} binomial(n,k)^2 * binomial(k,floor(k/2)).

Original entry on oeis.org

1, 2, 7, 31, 143, 686, 3417, 17382, 89791, 470134, 2487593, 13273921, 71341921, 385786298, 2097096263, 11451611919, 62784274623, 345436875758, 1906568766489, 10552637998329, 58556298508449, 325676578717698, 1815140080977303, 10135993961893674
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 29 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[n, k]^2 Binomial[k, Floor[k/2]], {k, 0, n}], {n, 0, 22}]
  • PARI
    a(n) = sum(k=0, n, binomial(n,k)^2 * binomial(k,k\2)); \\ Michel Marcus, Nov 29 2021

Formula

From Vaclav Kotesovec, Nov 29 2021: (Start)
D-finite recurrence: n*(n+1)^2*(32*n^4 - 208*n^3 + 456*n^2 - 380*n + 81)*a(n) = 2*n*(64*n^6 - 320*n^5 + 344*n^4 + 288*n^3 - 332*n^2 - 363*n + 243)*a(n-1) + 2*(n-1)*(32*n^6 - 80*n^5 - 624*n^4 + 2492*n^3 - 2257*n^2 - 596*n + 927)*a(n-2) + 2*(n-2)*(832*n^6 - 6272*n^5 + 16360*n^4 - 15456*n^3 - 1016*n^2 + 8375*n - 3195)*a(n-3) - 9*(n-3)^2*(n-2)*(32*n^4 - 80*n^3 + 24*n^2 + 36*n - 19)*a(n-4).
a(n) ~ (1 + sqrt(2))^(2*n + 3/2) / (2*Pi*n). (End)

A381199 a(n) = (4*n)!/((n!)^2*(2*n)!)*Sum_{k=0..n} binomial(n,k)^2*binomial(2*k,k).

Original entry on oeis.org

1, 36, 6300, 1718640, 575675100, 216636756336, 87874675224336, 37563969509352000, 16692217815436148700, 7642084994921759382000, 3582530520581922083974800, 1712083670316898167464884800, 831357643152788660610464490000, 409154554816583487288034143528000, 203690783136217174743485058666840000
Offset: 0

Views

Author

Stefano Spezia, Feb 16 2025

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=(4n)!/((n!)^2*(2n)!)*Sum[Binomial[n,k]^2Binomial[2k,k],{k,0,n}]; Array[a,15,0]

Formula

a(n) = (4*n)!*hypergeom([1/2, -n, -n], [1, 1], 4)/((n!)^2*(2*n)!).
D-finite with recurrence n^4*a(n) -4*(4*n-1)*(4*n-3)*(10*n^2-10*n+3)*a(n-1) +144*(4*n-5)*(4*n-3)*(4*n-7)*(4*n-1)*a(n-2)=0. - R. J. Mathar, Feb 18 2025
a(n) ~ 2^(6*n - 1/2) * 3^(2*n + 3/2) / (4*Pi^2*n^2). - Vaclav Kotesovec, May 29 2025
Previous Showing 81-88 of 88 results.