cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-55 of 55 results.

A316902 Heinz numbers of aperiodic integer partitions whose reciprocal sum is an integer.

Original entry on oeis.org

2, 18, 72, 147, 162, 195, 250, 288, 294, 390, 500, 588, 648, 780, 1125, 1152, 1176, 1323, 1458, 1560, 1755, 2000, 2250, 2352, 2592, 2646, 3120, 3185, 3510, 4000, 4500, 4608, 4704, 4802, 5292, 6240, 6370, 6475, 6591, 7020, 7581, 8450, 9000, 9408, 10101, 10125
Offset: 1

Views

Author

Gus Wiseman, Jul 16 2018

Keywords

Comments

The reciprocal sum of (y_1, ..., y_k) is 1/y_1 + ... + 1/y_k.
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
A partition is aperiodic if its multiplicities are relatively prime.

Examples

			The sequence of partitions whose Heinz numbers belong to this sequence begins: (1), (221), (22111), (442), (22221), (632), (3331), (2211111), (4421), (6321), (33311), (44211), (2222111).
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2,20000],And[GCD@@FactorInteger[#][[All,2]]==1,IntegerQ[Sum[m[[2]]/PrimePi[m[[1]]],{m,FactorInteger[#]}]]]&]

A316903 Heinz numbers of aperiodic integer partitions whose reciprocal sum is the reciprocal of an integer.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 65, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 147, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 195, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257
Offset: 1

Views

Author

Gus Wiseman, Jul 16 2018

Keywords

Comments

The reciprocal sum of (y_1, ..., y_k) is 1/y_1 + ... + 1/y_k.
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
A partition is aperiodic if its multiplicities are relatively prime.

Crossrefs

Programs

  • Mathematica
    Select[Range[2,1000],And[GCD@@FactorInteger[#][[All,2]]==1,IntegerQ[1/Sum[m[[2]]/PrimePi[m[[1]]],{m,FactorInteger[#]}]]]&]

A325701 Nonprime Heinz numbers of integer partitions whose reciprocal factorial sum is the reciprocal of an integer.

Original entry on oeis.org

1, 9, 25, 49, 77, 121, 125, 169, 221, 245, 289, 323, 343, 361, 375, 437, 529, 841, 899, 961, 1331, 1369, 1517, 1681, 1763, 1849, 1859, 2021, 2197, 2209, 2401, 2773, 2809, 2873, 3127, 3481, 3721, 3757, 4087, 4489, 4757, 4913, 5041, 5183, 5329, 5929, 6137, 6241
Offset: 1

Views

Author

Gus Wiseman, May 17 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The reciprocal factorial sum of an integer partition (y_1,...,y_k) is 1/y_1! + ... + 1/y_k!.

Examples

			The sequence of terms together with their prime indices begins:
     1: {}
     9: {2,2}
    25: {3,3}
    49: {4,4}
    77: {4,5}
   121: {5,5}
   125: {3,3,3}
   169: {6,6}
   221: {6,7}
   245: {3,4,4}
   289: {7,7}
   323: {7,8}
   343: {4,4,4}
   361: {8,8}
   375: {2,3,3,3}
   437: {8,9}
   529: {9,9}
   841: {10,10}
   899: {10,11}
   961: {11,11}
For example, the sequence contains 245 because the prime indices of 245 are {3,4,4}, with reciprocal sum 1/6 + 1/24 + 1/24 = 1/4.
		

Crossrefs

Reciprocal factorial sum: A002966, A316854, A316857, A325618, A325620, A325622, A325623.

Programs

  • Mathematica
    Select[Range[1000],!PrimeQ[#]&&IntegerQ[1/Total[Cases[FactorInteger[#],{p_,k_}:>k/PrimePi[p]!]]]&]

A379452 Number of compositions (ordered partitions) of 1 into n distinct reciprocals of positive integers.

Original entry on oeis.org

1, 0, 6, 144, 8640, 1670400, 1238655600, 6095673521280
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 23 2024

Keywords

Examples

			a(3) = 6 because we have 1 = 1/2 + 1/3 + 1/6
                           = 1/2 + 1/6 + 1/3
                           = 1/3 + 1/2 + 1/6
                           = 1/3 + 1/6 + 1/2
                           = 1/6 + 1/2 + 1/3
                           = 1/6 + 1/3 + 1/2.
		

Crossrefs

Formula

a(n) = n! * A006585(n).

A381724 a(n) = pos(M(n)), where M(n) is the n X n matrix with every term = 4, and pos(M(n)) is the positive part of the determinant of M(n); see A380661.

Original entry on oeis.org

4, 16, 192, 3072, 61440, 1474560, 41287680, 1321205760, 47563407360, 1902536294400, 83711596953600, 4018156653772800, 208944145996185600, 11700872175786393600, 702052330547183616000, 44931349155019751424000, 3055331742541343096832000
Offset: 1

Views

Author

Clark Kimberling, Mar 05 2025

Keywords

Comments

For a matrix M with determinant |M|, the numbers pos(M) and neg(M) are the positive and negative parts of |M|, as defined in A380661. The definition implies that (pos(M)+neg(M))/2 = |M| and (pos(M)-neg(M))/2 = permanent of M. Thus, M is singular if and only if pos(M) = - neg(M).
Guide to sequences pos(M(n)), where M(n) is the n X n matrix with every term = c, a constant:
c = 1: A001710
c = 2: A002866
c = 3: A032108
c = 4: this sequence
For each c >=1, let s(n) = pos(M(n)); then s(1) = c, s(2) = c^2, and s(n) = c*n*s(n-1) for n >= 3.

Crossrefs

Essentially the same as A051711.

Programs

  • Mathematica
    c = 4; d = Table[Det[ConstantArray[c, {n, n}]], {n, 1, 18}]
    p = Table[Permanent[ConstantArray[c, {n, n}]], {n, 1, 18}]
    neg = (d - p)/2
    pos = (d + p)/2

Formula

s(1) = 4, s(2) = 16, and s(n) = 4*n*s(n-1) for n >= 3.
Previous Showing 51-55 of 55 results.