A145546
Number of distinct values taken by 6^6^...^6 (with n 6's and parentheses inserted in all possible ways).
Original entry on oeis.org
1, 1, 2, 4, 9, 20, 48, 115, 286, 718, 1838, 4750, 12431, 32790, 87225, 233534, 629123, 1703586, 4635181, 12664335, 34734322, 95592704, 263909594
Offset: 1
A145547
Number of distinct values taken by 7^7^...^7 (with n 7's and parentheses inserted in all possible ways).
Original entry on oeis.org
1, 1, 2, 4, 9, 20, 48, 115, 286, 719, 1841, 4762, 12470, 32918, 87628, 234795, 633000, 1715435, 4671098, 12772707, 35059815, 96567161, 266818396, 739344427
Offset: 1
A145548
Number of distinct values taken by 8^8^...^8 (with n 8's and parentheses inserted in all possible ways).
Original entry on oeis.org
1, 1, 2, 4, 9, 20, 48, 115, 286, 719, 1842, 4765, 12482, 32957, 87756, 235198, 634261, 1719312, 4682952, 12808650, 35168306, 96893138, 267794711, 742260014, 2062792103
Offset: 1
A145549
Number of distinct values taken by 9^9^...^9 (with n 9's and parentheses inserted in all possible ways).
Original entry on oeis.org
1, 1, 2, 4, 9, 20, 48, 115, 286, 719, 1842, 4766, 12485, 32969, 87795, 235326, 634664, 1720573, 4686829, 12820504, 35204254, 97001655, 268120807, 743236814, 2065709551, 5755253457
Offset: 1
A145550
Number of distinct values taken by 10^10^...^10 (with n 10's and parentheses inserted in all possible ways).
Original entry on oeis.org
1, 1, 2, 4, 9, 20, 48, 115, 286, 719, 1842, 4766, 12486, 32972, 87807, 235365, 634792, 1720976, 4688090, 12824381, 35216108, 97037603, 268229329, 743562936, 2066686470, 5758171390, 16079351152
Offset: 1
A082499
Take a string of n x's and insert n-1 ^'s and n-2 pairs of parentheses in all possible legal ways. Sequence gives number of distinct values when x = sqrt(2).
Original entry on oeis.org
1, 1, 2, 4, 8, 17, 38, 88, 206, 497, 1212, 2996
Offset: 1
For n = 4 there are 5 functions: f1(x) = ((x^x)^x)^x; f2(x) = (x^(x^x))^x; f3(x) = x^((x^x)^x); f4(x) = x^(x^(x^x)); f5(x) = (x^x)^(x^x); but only 4 different values when x = sqrt(2).
-
trees[1] = {x};
trees[n_] := trees[n] = Flatten@Table[ch1^ch2, {k, n-1}, {ch1, trees[k]}, {ch2, trees[n-k]}];
logs[t_] := ((log/@t) //. {log[a_^b_]:>log[a]b, log[a_ b_]:>log[a]+log[b], log[x]->one, log[one]->0});
Table[Length@Union[logs@logs@trees[n] /. {one->1, x->Sqrt[2]}, SameTest->Equal], {n, 9}] (* Andrei Zabolotskii, Jan 03 2025 *)
A198683
Number of distinct values taken by i^i^...^i (with n i's and parentheses inserted in all possible ways) where i = sqrt(-1) and ^ denotes the principal value of the exponential function.
Original entry on oeis.org
1, 1, 2, 3, 7, 15, 34, 77, 187, 462, 1152
Offset: 1
a(1) = 1: there is one value, i.
a(2) = 1: there is one value, i^i = exp(i Pi / 2)^i = exp(-Pi/2) = 0.2079...
a(3) = 2: there are two values: (i^i)^i = i^(-1) = 1/i = -i and i^(i^i) = i^0.2079... = exp(0.2079... i Pi / 2) = 0.9472... + 0.3208... i.
a(4) = 3: there are 5 possible parenthesizations but they give only 3 distinct values: i^(i^(i^i)), i^((i^i)^i) = ((i^i)^i)^i, (i^i)^(i^i) = (i^(i^i))^i.
-
iParens[1] = {I}; iParens[n_] := iParens[n] = Union[Flatten[Table[Outer[Power, iParens[k], iParens[n - k]], {k, n - 1}]], SameTest -> Equal]; Table[Length[iParens[n]], {n, 10}]
a(12) is said to be either 2919 or 2926. The value will not be included in the data section until it has been confirmed. -
N. J. A. Sloane, Nov 26 2015
A199205
Number of distinct values taken by 4th derivative of x^x^...^x (with n x's and parentheses inserted in all possible ways) at x=1.
Original entry on oeis.org
1, 1, 2, 4, 9, 17, 30, 50, 77, 113, 156, 212, 279, 355, 447, 560, 684, 822, 985, 1171, 1375, 1599, 1856, 2134, 2445, 2769, 3125, 3519, 3939, 4376, 4857, 5372, 5914, 6484, 7083, 7717, 8411, 9130, 9882, 10683, 11524, 12393
Offset: 1
a(5) = 9 because the A000108(4) = 14 possible parenthesizations of x^x^x^x^x lead to 9 different values of the 4th derivative at x=1: (x^(x^(x^(x^x)))) -> 56; (x^(x^((x^x)^x))) -> 80; (x^((x^(x^x))^x)), (x^((x^x)^(x^x))) -> 104; ((x^x)^(x^(x^x))), ((x^(x^(x^x)))^x) -> 124; ((x^(x^x))^(x^x)) -> 148; (x^(((x^x)^x)^x)) -> 152; ((x^x)^((x^x)^x)), ((x^((x^x)^x))^x) -> 172; (((x^x)^x)^(x^x)), (((x^(x^x))^x)^x), (((x^x)^(x^x))^x) -> 228; ((((x^x)^x)^x)^x) -> 344.
Cf.
A000081 (distinct functions),
A000108 (parenthesizations),
A000012 (first derivatives),
A028310 (2nd derivatives),
A199085 (3rd derivatives),
A199296 (5th derivatives),
A002845,
A003018,
A003019,
A145545,
A145546,
A145547,
A145548,
A145549,
A145550,
A082499,
A196244,
A198683,
A215703,
A215834. Column k=4 of
A216368.
-
f:= proc(n) option remember;
`if`(n=1, {[0, 0, 0]},
{seq(seq(seq( [2+g[1], 3*(1 +g[1] +h[1]) +g[2],
8 +12*g[1] +6*h[1]*(1+g[1]) +4*(g[2]+h[2])+g[3]],
h=f(n-j)), g=f(j)), j=1..n-1)})
end:
a:= n-> nops(map(x-> x[3], f(n))):
seq(a(n), n=1..20);
-
f[n_] := f[n] = If[n == 1, {{0, 0, 0}}, Union @ Flatten[#, 3]& @ {Table[ Table[Table[{2 + g[[1]], 3*(1 + g[[1]] + h[[1]]) + g[[2]], 8 + 12*g[[1]] + 6*h[[1]]*(1 + g[[1]]) + 4*(g[[2]] + h[[2]]) + g[[3]]}, {h, f[n - j]}], {g, f[j]}], {j, 1, n - 1}]}];
a[n_] := Length @ Union @ (#[[3]]& /@ f[n]);
Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 1, 32}] (* Jean-François Alcover, Jun 08 2018, after Alois P. Heinz *)
A199296
Number of distinct values taken by 5th derivative of x^x^...^x (with n x's and parentheses inserted in all possible ways) at x=1.
Original entry on oeis.org
1, 1, 2, 4, 9, 20, 45, 92, 182, 342, 601, 982, 1499, 2169, 2970, 3994, 5297, 6834, 8635, 10714, 13121, 16104, 19674, 23868, 28453, 33637, 39630, 46730
Offset: 1
a(4) = 4 because the A000108(3) = 5 possible parenthesizations of x^x^x^x lead to 4 different values of the 5th derivative at x=1: (x^(x^(x^x))) -> 360; (x^((x^x)^x)) -> 590; ((x^(x^x))^x), ((x^x)^(x^x)) -> 650; (((x^x)^x)^x) -> 1110.
Cf.
A000081 (distinct functions),
A000108 (parenthesizations),
A000012 (first derivatives),
A028310 (2nd derivatives),
A199085 (3rd derivatives),
A199205 (4th derivatives),
A002845,
A003018,
A003019,
A145545,
A145546,
A145547,
A145548,
A145549,
A145550,
A082499,
A196244,
A198683,
A215703,
A215835. Column k=5 of
A216368.
-
f:= proc(n) option remember;
`if`(n=1, {[0, 0, 0, 0]},
{seq(seq(seq([2+g[1], 3*(1 +g[1] +h[1]) +g[2],
8 +12*g[1] +6*h[1]*(1+g[1]) +4*(g[2]+h[2])+g[3],
10+50*h[1]+10*h[2]+5*h[3]+(30+30*h[1]+10*h[2]
+15*g[1])*g[1]+(20+10*h[1])*g[2]+5*g[3]+g[4]],
h=f(n-j)), g=f(j)), j=1..n-1)})
end:
a:= n-> nops(map(x-> x[4], f(n))):
seq(a(n), n=1..20);
-
f[n_] := f[n] = If[n == 1, {{0, 0, 0, 0}}, Union@Flatten[#, 3]& @ {Table[ Table[Table[{2 + g[[1]], 3*(1 + g[[1]] + h[[1]]) + g[[2]], 8 + 12*g[[1]] + 6*h[[1]]*(1 + g[[1]]) + 4*(g[[2]] + h[[2]]) + g[[3]], 10 + 50*h[[1]] + 10*h[[2]] + 5*h[[3]] + (30 + 30*h[[1]] + 10*h[[2]] + 15*g[[1]])*g[[1]] + (20 + 10*h[[1]])*g[[2]] + 5*g[[3]] + g[[4]]}, {h, f[n - j]}], {g, f[j]}], {j, 1, n - 1}]}];
a[n_] := Length@Union@(#[[4]]& /@ f[n]);
Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 1, 24}] (* Jean-François Alcover, Sep 01 2023, after Alois P. Heinz *)
A199883
Number of distinct values taken by 6th derivative of x^x^...^x (with n x's and parentheses inserted in all possible ways) at x=1.
Original entry on oeis.org
1, 1, 2, 4, 9, 20, 48, 113, 262, 591, 1263, 2505, 4764, 8479, 14285, 22871, 35316, 52755, 76517, 107826, 148914, 202715, 270622
Offset: 1
a(4) = 4 because the A000108(3) = 5 possible parenthesizations of x^x^x^x lead to 4 different values of the 6th derivative at x=1: (x^(x^(x^x))) -> 2934; ((x^x)^(x^x)), ((x^(x^x))^x) -> 4908; (x^((x^x)^x)) -> 5034; (((x^x)^x)^x) -> 8322.
Cf.
A000081 (distinct functions),
A000108 (parenthesizations),
A000012 (first derivatives),
A028310 (2nd derivatives),
A199085 (3rd derivatives),
A199205 (4th derivatives),
A199296 (5th derivatives),
A002845,
A003018,
A003019,
A145545,
A145546,
A145547,
A145548,
A145549,
A145550,
A082499,
A196244,
A198683,
A215703,
A215836. Column k=6 of
A216368.
-
f:= proc(n) option remember;
`if`(n=1, {[0, 0, 0, 0, 0]},
{seq(seq(seq([2+g[1], 3*(1 +g[1] +h[1]) +g[2],
8 +12*g[1] +6*h[1]*(1+g[1]) +4*(g[2]+h[2])+g[3],
10+50*h[1]+10*h[2]+5*h[3]+(30+30*h[1]+10*h[2]
+15*g[1])*g[1]+(20+10*h[1])*g[2]+5*g[3]+g[4],
45*h[1]*g[1]^2+(120+60*h[2]+15*h[3]+60*g[2]+
270*h[1])*g[1]+54+15*h[3]+30*g[3]+6*g[4]+
60*h[1]*g[2]+15*h[1]*g[3]+30*h[1]+ 20*h[2]*g[2]+
100*h[2]+90*h[1]^2+g[5]+60*g[2]+6*h[4]],
h=f(n-j)), g=f(j)), j=1..n-1)})
end:
a:= n-> nops(map(x-> x[5], f(n))):
seq(a(n), n=1..15);
Comments