A350448
Triangle read by rows: T(n,k) is the number of acyclic graphs on n unlabeled nodes whose longest directed path has k arcs.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 3, 2, 0, 1, 8, 14, 8, 0, 1, 20, 89, 128, 64, 0, 1, 55, 634, 1934, 2336, 1024, 0, 1, 163, 5668, 36428, 83648, 84992, 32768, 0, 1, 556, 67926, 959718, 3919584, 7097088, 6144000, 2097152, 0, 1, 2222, 1137641, 37205922, 268989920, 793138688, 1175224320, 880803840, 268435456, 0
Offset: 0
Triangle begins:
1;
1, 0;
1, 1, 0;
1, 3, 2, 0;
1, 8, 14, 8, 0;
1, 20, 89, 128, 64, 0;
1, 55, 634, 1934, 2336, 1024, 0;
1, 163, 5668, 36428, 83648, 84992, 32768, 0;
...
A368602
Triangle read by rows where T(n,k) is the number of labeled acyclic digraphs on {1..n} with sinks {1..k}.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 5, 3, 1, 0, 79, 33, 7, 1, 0, 3377, 1071, 161, 15, 1, 0, 362431, 92289, 10591, 705, 31, 1, 0, 93473345, 19856703, 1832705, 93375, 2945, 63, 1, 0, 56272471039, 10249747713, 789619327, 32382465, 782719, 12033, 127, 1
Offset: 0
Triangle begins:
1
0 1
0 1 1
0 5 3 1
0 79 33 7 1
0 3377 1071 161 15 1
...
Row n = 3 counts the following set-systems:
{{1},{1,2},{1,3}} {{1},{2},{1,3}} {{1},{2},{3}}
{{1},{1,2},{2,3}} {{1},{2},{2,3}}
{{1},{1,3},{2,3}} {{1},{2},{1,2,3}}
{{1},{1,2},{1,2,3}}
{{1},{1,3},{1,2,3}}
For any choice of k sinks we get
A361718.
A059201 counts covering T_0 set-systems.
Cf.
A000169,
A003024,
A003087,
A082402,
A088957,
A334282,
A367862,
A367904,
A367908,
A368600,
A368601.
-
Table[Length[Select[Subsets[Subsets[Range[n]],{n}], Union@@Cases[#,{_}]==Range[k] && Length[Select[Tuples[#],UnsameQ@@#&]]==1&]], {n,0,3},{k,0,n}]
A361589
Number of acyclic digraphs on n unlabeled nodes without isolated nodes.
Original entry on oeis.org
1, 0, 1, 4, 25, 271, 5682, 237684, 20042357, 3404651985, 1162523674892, 796395726736678, 1093229314594543016, 3004753338859186373234, 16527845763725396055765240, 181891586856152393087373330332, 4004313490358484085907684748704180, 176328671349936542115174881107633828418
Offset: 0
Comments