A106164
Number of indecomposable Type I but not Type II binary self-dual codes of length 2n.
Original entry on oeis.org
0, 1, 0, 0, 0, 0, 1, 1, 1, 2, 6, 8, 19, 45, 148, 457, 2448, 20786
Offset: 0
- R. T. Bilous, Enumeration of binary self-dual codes of length 34, Preprint, 2005.
- R. T. Bilous and G. H. J. van Rees, An enumeration of binary self-dual codes of length 32, Designs, Codes Crypt., 26 (2002), 61-86.
- J. H. Conway and V. S. Pless, On the enumeration of self-dual codes, J. Comb. Theory, A28 (1980), 26-53.
- V. S. Pless, The children of the (32,16) doubly even codes, IEEE Trans. Inform. Theory, 24 (1978), 738-746.
- G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
- J. H. Conway, V. Pless and N. J. A. Sloane, The Binary Self-Dual Codes of Length Up to 32: A Revised Enumeration, J. Comb. Theory, A28 (1980), 26-53 (Abstract, pdf, ps, Table A, Table D).
- E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998 (Abstract, pdf, ps).
a(34) computed by
N. J. A. Sloane, based on data in Bilous's paper, Sep 06 2005
A321969
Distinct weight enumerators for binary self-dual codes of length 2n.
Original entry on oeis.org
1, 1, 1, 2, 2, 3, 4, 6, 8, 15, 22, 45, 79, 159, 312, 696, 1264, 3504
Offset: 1
For n=1 there is only a(1) = 1 distinct weight enumerator for the length 2 binary self-dual codes. Up to permutation equivalence there is only 1 length 2 binary self-dual code.
For n=18 there are a(18)=3504 distinct weight enumerators. There are 519492 binary self-dual codes of length 36. However there are only 3504 distinct weight enumerators among the 519492 binary self-dual codes.
A215219
Number of (indecomposable or decomposable) Type II binary self-dual codes of length 8n with the highest minimal distance.
Original entry on oeis.org
1, 1, 2, 1, 5, 16470, 1
Offset: 0
- Koichi Betsumiya, Masaaki Harada and Akihiro Munemasa, A Complete Classification of Doubly Even Self-Dual Codes of Length 40, arXiv:1104.3727v3 [math.CO], v3, Aug 02, 2012. - From _Jonathan Vos Post_, Aug 06 2012
- J. H. Conway and V. S. Pless, On the enumeration of self-dual codes, J. Comb. Theory, A28 (1980), 26-53. [DOI] MR0558873
- J. H. Conway, V. Pless and N. J. A. Sloane, The Binary Self-Dual Codes of Length Up to 32: A Revised Enumeration, J. Comb. Theory, A60 (1992), 183-195 (Abstract, pdf, ps, Table A, Table D).
- S. K. Houghten, C. W. H. Lam, L. H. Thiel and J. A. Parker, The extended quadratic residue code is the only (48,24,12) self-dual doubly-even code, IEEE Trans. Inform. Theory, 49 (2003), 53-59.
- W. C. Huffman, On the classification and enumeration of self-dual codes, Finite Fields Applic. 11 (2005), 451-490. [DOI]
- G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
- V. S. Pless, The children of the (32,16) doubly even codes, IEEE Trans. Inform. Theory, 24 (1978), 738-746. [DOI] MR0514353
- E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998 (Abstract, pdf, ps).
A322429
Number of decomposable binary self-dual codes of length 2n (up to permutation equivalence).
Original entry on oeis.org
0, 1, 1, 1, 2, 2, 3, 5, 7, 10, 17, 29, 58, 113, 274, 772, 3361
Offset: 1
There are A003179(17) = 24147 binary self-dual codes of length 2*17 = 34 up to permutation equivalence. There are A003178(17) = 2523 binary self-dual codes of length 2*17 = 34 that are indecomposable. This means that there are A003179(17) - A003178(17) = a(17) = 3361 binary self-dual codes of length 2*17=34 that are decomposable.
- J. H. Conway, V. Pless and N. J. A. Sloane, The Binary Self-Dual Codes of Length Up to 32: A Revised Enumeration, J. Comb. Theory, A28 (1980), 26-53.
- W. Cary Huffman and Vera Pless, Fundamentals of Error Correcting Codes, Cambridge University Press, 2003, pp. 7, 18, 338-393.
- G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
- E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998 (Abstract, pdf, ps).
A323357
Number of binary self-dual codes of length 2n (up to permutation equivalence) that have a unique automorphism group size.
Original entry on oeis.org
1, 1, 1, 2, 2, 3, 4, 7, 9, 16, 23, 42, 68, 94, 124, 159, 187, 212
Offset: 1
There are a(18) = 212 binary self-dual codes (up to permutation equivalence) of length 2*18 = 36 that have a unique automorphism group size.
A105510
Number of indecomposable self-dual ternary codes of length 4n.
Original entry on oeis.org
- J. H. Conway, V. S. Pless and N. J. A. Sloane, Self-dual codes over GF(3) and GF(4) of length not exceeding 16, IEEE Trans. Inform. Theory, 25 (1979), 312-322.
- J. S. Leon, V. S. Pless and N. J. A. Sloane, On ternary self-dual codes of length 24, IEEE Trans. Inform. Theory, 27 (1981), 176-180.
- C. L. Mallows, V. S. Pless and N. J. A. Sloane, Self-dual codes over GF(3), SIAM J. Appl. Math. 31 (1976), 649-666.
- G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
- E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998 (Abstract, pdf, ps).
A110193
Number of (indecomposable or decomposable) binary self-dual codes (singly- or doubly-even) of length 2n and minimal distance exactly 6.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 3, 13, 74, 938
Offset: 1
- R. T. Bilous, Enumeration of binary self-dual codes of length 34, Preprint, 2005.
- R. T. Bilous and G. H. J. van Rees, An enumeration of binary self-dual codes of length 32, Designs, Codes Crypt., 26 (2002), 61-86.
- J. H. Conway and V. S. Pless, On the enumeration of self-dual codes, J. Comb. Theory, A28 (1980), 26-53.
- V. S. Pless, The children of the (32,16) doubly even codes, IEEE Trans. Inform. Theory, 24 (1978), 738-746.
- G. Nebe, E. M. Rains and N. J. A. Sloane, Self-Dual Codes and Invariant Theory, Springer, Berlin, 2006.
- J. H. Conway, V. Pless and N. J. A. Sloane, The Binary Self-Dual Codes of Length Up to 32: A Revised Enumeration, J. Comb. Theory, A28 (1980), 26-53 (Abstract, pdf, ps, Table A, Table D).
- E. M. Rains and N. J. A. Sloane, Self-dual codes, pp. 177-294 of Handbook of Coding Theory, Elsevier, 1998 (Abstract, pdf, ps).
A321946
Number of divisors for the automorphism group size having the largest number of divisors for a binary self-dual code of length 2n.
Original entry on oeis.org
2, 4, 10, 28, 36, 66, 144, 192, 340, 570, 1200, 1656, 3456, 5616, 9072, 10752, 22176
Offset: 1
There is one binary self-dual code of length 2*14=28 having an automorphism group size of 1428329123020800. This number has a(14) = 5616 divisors (including 1 and 1428329123020800). The automorphism size of 1428329123020800 represents the automorphism size with the largest number of divisors for a binary self-dual code of length 2*14=28.
A322309
Largest automorphism group size for a binary self-dual code of length 2n.
Original entry on oeis.org
2, 8, 48, 1344, 3840, 46080, 645120, 10321920, 185794560, 3715891200, 81749606400, 1961990553600, 51011754393600, 1428329123020800, 42849873690624000, 1371195958099968000, 46620662575398912000
Offset: 1
The largest automorphism group size a binary self-dual code of length 2*16=32 is a(16) = 1371195958099968000.
- W. Cary Huffman and Vera Pless, Fundamentals of Error Correcting Codes, Cambridge University Press, 2003, Pages 338-393.
A323358
Number of distinct automorphism group sizes for binary self-dual codes of length 2n such that multiple same length binary self-dual codes with different weight distributions share the same automorphism group size.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 6, 17, 55, 117, 226, 343, 535
Offset: 1
There are a(18) = 535 automorphism group sizes for the binary self-dual codes of length 2*18 = 36 where codes having different weight distributions share the same automorphism group size.
Comments