cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 345 results. Next

A323401 Lexicographically earliest sequence such that for all i, j, a(i) = a(j) => f(i) = f(j) where f(n) = [A003557(n), A323363(n)] for all other numbers, except f(n) = 0 for odd primes.

Original entry on oeis.org

1, 2, 3, 4, 3, 5, 3, 6, 7, 8, 3, 9, 3, 10, 10, 11, 3, 12, 3, 13, 14, 15, 3, 16, 17, 18, 19, 20, 3, 21, 3, 22, 23, 24, 23, 25, 3, 26, 27, 28, 3, 29, 3, 30, 31, 32, 3, 33, 34, 35, 32, 36, 3, 37, 32, 38, 39, 40, 3, 41, 3, 42, 43, 44, 45, 46, 3, 47, 42, 46, 3, 48, 3, 49, 50, 51, 42, 52, 3, 53, 54, 55, 3, 56, 57, 58, 59, 60, 3, 61, 62, 63, 64, 65, 59, 66, 3, 67, 68, 69, 3, 70, 3
Offset: 1

Views

Author

Antti Karttunen, Jan 15 2019

Keywords

Comments

Restricted growth sequence transform of function f, defined as f(n) = A323372(n) for all other numbers n, except f(p) = 0 for odd primes p.
For all i, j:
A323400(i) = A323400(j) => a(i) = a(j),
a(i) = a(j) => A322588(i) = A322588(j),
a(i) = a(j) => A323364(i) = A323364(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    DirInverse(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = -sumdiv(n, d, if(dA001615(n) = (n * sumdivmult(n, d, issquarefree(d)/d)); \\ From A001615
    v323363 = DirInverse(vector(up_to,n,A001615(n)));
    A323363(n) = v323363[n];
    A003557(n) = { my(f=factor(n)); for(i=1, #f~, f[i, 2] = f[i, 2]-1); factorback(f); };
    Aux323401(n) = if((n>2)&&isprime(n), 0, [A003557(n), A323363(n)]);
    v323401 = rgs_transform(vector(up_to, n, Aux323401(n)));
    A323401(n) = v323401[n];

A323404 Lexicographically earliest sequence such that for all i, j, a(i) = a(j) => f(i) = f(j) where f(n) = [A003557(n), A023900(n), A063994(n)].

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 35, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 76, 92
Offset: 1

Views

Author

Antti Karttunen, Jan 13 2019

Keywords

Comments

For all i, j: a(i) = a(j) => A247074(i) = A247074(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A003557(n) = { my(f=factor(n)); for (i=1, #f~, f[i, 2] = max(0,f[i, 2]-1)); factorback(f); };
    A023900(n) = sumdivmult(n, d, d*moebius(d)); \\ From A023900
    A063994(n) = { my(f=factor(n)[, 1]); prod(i=1, #f, gcd(f[i]-1, n-1)); }; \\ From A063994
    Aux323404(n) = if(1,[A003557(n), A023900(n), A063994(n)]);
    v323404 = rgs_transform(vector(up_to, n, Aux323404(n)));
    A323404(n) = v323404[n];

A326199 Lexicographically earliest sequence such that a(i) = a(j) => f(i) = f(j), where f(n) = [A003557(n), A046523(n), A048250(n)] for all other numbers, except f(n) = 0 for odd primes.

Original entry on oeis.org

1, 2, 3, 4, 3, 5, 3, 6, 7, 8, 3, 9, 3, 10, 10, 11, 3, 12, 3, 13, 14, 15, 3, 16, 17, 18, 19, 20, 3, 21, 3, 22, 23, 24, 23, 25, 3, 26, 27, 28, 3, 29, 3, 30, 31, 32, 3, 33, 34, 35, 32, 36, 3, 37, 32, 38, 39, 40, 3, 41, 3, 42, 43, 44, 45, 46, 3, 47, 42, 46, 3, 48, 3, 49, 50, 51, 42, 52, 3, 53, 54, 55, 3, 56, 57, 58, 59, 60, 3, 61, 62, 63, 64, 65, 59, 66, 3, 67, 68, 69, 3, 70, 3
Offset: 1

Views

Author

Antti Karttunen, Jul 13 2019

Keywords

Comments

For all i, j:
A295300(i) = A295300(j) => a(i) = a(j),
A305801(i) = A305801(j) => a(i) = a(j),
a(i) = a(j) => A294877(i) = A294877(j).

Crossrefs

Differs from A323401 for the first time at n = 382 where a(382) = 253, while A323401(382) = 140.

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A003557(n) = n/factorback(factor(n)[, 1]); \\ From A003557
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A048250(n) = if(n<1, 0, sumdiv(n, d, if(core(d)==d, d)));
    A291750(n) = (1/2)*(2 + ((A003557(n)+A048250(n))^2) - A003557(n) - 3*A048250(n));
    Aux326199(n) = if((n>2)&&isprime(n),0,(1/2)*(2 + ((A046523(n) + A291750(n))^2) - A046523(n) - 3*A291750(n)));
    v326199 = rgs_transform(vector(up_to,n,Aux326199(n)));
    A326199(n) = v326199[n];

A328830 The second prime shadow of n: a(1) = 1; for n > 1, a(n) = a(A003557(n)) * prime(A056169(n)) when A056169(n) > 0, otherwise a(n) = a(A003557(n)).

Original entry on oeis.org

1, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 4, 2, 3, 3, 2, 2, 4, 2, 4, 3, 3, 2, 4, 2, 3, 2, 4, 2, 5, 2, 2, 3, 3, 3, 3, 2, 3, 3, 4, 2, 5, 2, 4, 4, 3, 2, 4, 2, 4, 3, 4, 2, 4, 3, 4, 3, 3, 2, 6, 2, 3, 4, 2, 3, 5, 2, 4, 3, 5, 2, 4, 2, 3, 4, 4, 3, 5, 2, 4, 2, 3, 2, 6, 3, 3, 3, 4, 2, 6, 3, 4, 3, 3, 3, 4, 2, 4, 4, 3, 2, 5, 2, 4, 5
Offset: 1

Views

Author

Antti Karttunen, Oct 29 2019

Keywords

Comments

a(n) depends only on prime signature of n (cf. A025487).

Examples

			For n = 30 = 2 * 3 * 5, there are three unitary prime factors, while A003557(30) = 1, which terminates the recursion, thus a(30) = prime(3) = 5.
For n = 60060 = 2^2 * 3 * 5 * 7 * 11 * 13, there are 5 unitary prime factors, while in A003557(60060) = 2 there is only one, thus a(60060) = prime(5) * prime(1) = 11 * 2 = 22.
The number 1260 = 2^2*3^2*5*7 has prime exponents (2,2,1,1) so its prime shadow is prime(2)*prime(2)*prime(1)*prime(1) = 36.  Next, 36 = 2^2*3^2 has prime exponents (2,2) so its prime shadow is prime(2)*prime(2) = 9. In fact, the term a(1260) = 9 is the first appearance of 9 in the sequence. - _Gus Wiseman_, Apr 28 2022
		

Crossrefs

Column 2 of A353510.
Differs from A182860 for the first time at a(30) = 5, while A182860(30) = 4.
Cf. A182863 for the first appearances.
A005361 gives product of prime exponents.
A112798 gives prime indices, sum A056239.
A124010 gives prime signature, sorted A118914.
A181819 gives prime shadow, with an inverse A181821.
A325131 lists numbers relatively prime to their prime shadow.
A325755 lists numbers divisible by their prime shadow.

Programs

Formula

a(1) = 1; for n > 1, a(n) = A008578(1+A056169(n)) * a(A003557(n)).
A001221(a(n)) = A323022(n).
A001222(a(n)) = A071625(n).
a(n) = A181819(A181819(n)). - Gus Wiseman, Apr 27 2022

Extensions

Added Gus Wiseman's new name to the front of the definition. - Antti Karttunen, Apr 27 2022

A347127 a(n) = A327251(n) / A003557(n).

Original entry on oeis.org

1, 5, 7, 8, 11, 35, 15, 11, 11, 55, 23, 56, 27, 75, 77, 14, 35, 55, 39, 88, 105, 115, 47, 77, 17, 135, 15, 120, 59, 385, 63, 17, 161, 175, 165, 88, 75, 195, 189, 121, 83, 525, 87, 184, 121, 235, 95, 98, 23, 85, 245, 216, 107, 75, 253, 165, 273, 295, 119, 616, 123, 315, 165, 20, 297, 805, 135, 280, 329, 825, 143, 121
Offset: 1

Views

Author

Antti Karttunen, Aug 23 2021

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p + 1)*e + p; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Aug 24 2021 *)
  • PARI
    A347127(n) = { my(f=factor(n)); prod(i=1, #f~, ((f[i, 1]+1)*f[i, 2] + f[i, 1])); };
    
  • PARI
    A001615(n) = if(1==n,n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
    A003557(n) = (n/factorback(factorint(n)[, 1]));
    A327251(n) = sumdiv(n, d, A001615(n/d)*d);
    A347127(n) = (A327251(n) / A003557(n));

Formula

Multiplicative with a(p^e) = ((p+1)*e + p) for prime p.
a(n) = A327251(n) / A003557(n).

A347963 Dirichlet convolution of A342001 with A003557.

Original entry on oeis.org

0, 1, 1, 3, 1, 7, 1, 7, 3, 9, 1, 18, 1, 11, 10, 15, 1, 18, 1, 24, 12, 15, 1, 40, 3, 17, 8, 30, 1, 54, 1, 31, 16, 21, 14, 45, 1, 23, 18, 54, 1, 68, 1, 42, 27, 27, 1, 84, 3, 24, 22, 48, 1, 48, 18, 68, 24, 33, 1, 132, 1, 35, 33, 63, 20, 96, 1, 60, 28, 90, 1, 99, 1, 41, 27, 66, 20, 110, 1, 114, 22, 45, 1, 168, 24, 47
Offset: 1

Views

Author

Antti Karttunen, Sep 24 2021

Keywords

Crossrefs

Cf. also A347961.

Programs

Formula

a(n) = Sum_{d|n} A003557(d) * A342001(n/d).

A348498 a(n) = gcd(A003415(n), A347130(n)) / A003557(n), where A003415 is the arithmetic derivative and A347130 is its Dirichlet convolution with the identity function.

Original entry on oeis.org

0, 1, 1, 1, 1, 5, 1, 3, 1, 7, 1, 8, 1, 9, 8, 2, 1, 7, 1, 12, 10, 13, 1, 11, 1, 15, 3, 16, 1, 31, 1, 5, 14, 19, 12, 5, 1, 21, 16, 17, 1, 41, 1, 24, 13, 25, 1, 14, 1, 9, 20, 28, 1, 9, 16, 23, 22, 31, 1, 46, 1, 33, 17, 3, 18, 61, 1, 36, 26, 59, 1, 13, 1, 39, 11, 40, 18, 71, 1, 22, 2, 43, 1, 62, 22, 45, 32, 35, 1, 41
Offset: 1

Views

Author

Antti Karttunen, Oct 23 2021

Keywords

Crossrefs

Programs

  • Mathematica
    f[n_] := If[n < 2, 0, n Total[#2/#1 & @@@ FactorInteger[n]]]; Table[GCD[f[n], DivisorSum[n, # f[n/#] &]]*Apply[Times, FactorInteger[n][[All, 1]]]/n, {n, 90}] (* Michael De Vlieger, Oct 25 2021 *)
  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A003557(n) = (n/factorback(factorint(n)[, 1]));
    A347130(n) = sumdiv(n,d,d*A003415(n/d));
    A348498(n) = (gcd(A003415(n), A347130(n))/A003557(n));

Formula

a(n) = A348497(n) / A003557(n).
a(n) = gcd(A342001(n), A347129(n)).

A348501 a(n) = A348496(A276086(n)), where A348496(n) = A348495(n) / A003557(n).

Original entry on oeis.org

1, 1, 1, 5, 1, 21, 1, 1, 1, 1, 3, 3, 1, 3, 1, 3, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 5, 35, 3, 3, 1, 3, 5, 1, 1, 3, 3, 1, 1, 13, 3, 3, 1, 3, 1, 3, 1, 3, 13, 3, 1, 1, 1, 3, 3, 1, 5, 5, 39, 3, 1, 3, 1, 3, 1, 3, 3, 9, 3, 3, 9, 9, 1, 3, 1, 3, 1, 3, 1, 3, 1, 57, 1, 3, 57, 9, 15, 15, 3, 9, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 3, 3
Offset: 0

Views

Author

Antti Karttunen, Oct 21 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Block[{b = MixedRadix[Reverse@ Prime@ Range@ 12]}, Map[Function[n, GCD[Total@ GCD[n, Range[n]], DivisorSum[n, #*(If[# < 2, 0, # Total[#2/#1 & @@@ FactorInteger[#]]] &[n/#]) &]]/Apply[Times, Map[#1^(#2 - 1) & @@ # &, FactorInteger[n]]]], Table[Function[k, Times @@ Power @@@ # &@ Transpose@ {Prime@ Range@ Length@ k, Reverse@ k}]@ IntegerDigits[n, b], {n, 0, 101}] ] ] (* Michael De Vlieger, Oct 21 2021 *)
  • PARI
    \\ Needs also code from A348496:
    A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
    A348501(n) = A348496(A276086(n));

Formula

a(n) = A348496(A276086(n)).

A349612 Dirichlet convolution of A342001 [{arithmetic derivative of n}/A003557(n)] with A325126 [Dirichlet inverse of rad(n)].

Original entry on oeis.org

0, 1, 1, 0, 1, 0, 1, 1, -1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, -3, 0, 3, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, -5, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, -5, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0
Offset: 1

Views

Author

Antti Karttunen, Nov 23 2021

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := e/p; d[1] = 0; d[n_] := n * Plus @@ f @@@ FactorInteger[n]; f1[p_, e_] := p^(e-1); s1[1] = 1; s1[n_] := Times @@ f1 @@@ FactorInteger[n]; f2[p_, e_] := -p*(1 - p)^(e - 1); s2[1] = 1; s2[n_] := Times @@ f2 @@@ FactorInteger[n]; a[n_] := DivisorSum[n, d[#]*s2[n/#]/s1[#] &]; Array[a, 100] (* Amiram Eldar, Nov 23 2021 *)
  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A003557(n) = (n/factorback(factorint(n)[, 1]));
    A342001(n) = (A003415(n) / A003557(n));
    A007947(n) = factorback(factorint(n)[, 1]); \\ From A007947
    memoA325126 = Map();
    A325126(n) = if(1==n,1,my(v); if(mapisdefined(memoA325126,n,&v), v, v = -sumdiv(n,d,if(dA007947(n/d)*A325126(d),0)); mapput(memoA325126,n,v); (v)));
    A349612(n) = sumdiv(n,d,A342001(d)*A325126(n/d));

Formula

a(n) = Sum_{d|n} A342001(d) * A325126(n/d).
If p prime, a(p) = 1. - Bernard Schott, Nov 28 2021
Dirichlet g.f.: Sum_{p prime} p^s/((p^s-1)*(p^s+p-1)). - Sebastian Karlsson, May 05 2022

A353521 Lexicographically earliest infinite sequence such that a(i) = a(j) => A003415(i) = A003415(j), A003557(i) = A003557(j) and A000035(i) = A000035(j), for all i, j >= 1.

Original entry on oeis.org

1, 2, 3, 4, 3, 5, 3, 6, 7, 8, 3, 9, 3, 10, 11, 12, 3, 13, 3, 14, 15, 16, 3, 17, 18, 19, 20, 21, 3, 22, 3, 23, 24, 25, 26, 27, 3, 28, 29, 30, 3, 31, 3, 32, 33, 34, 3, 35, 36, 37, 38, 39, 3, 40, 29, 41, 42, 22, 3, 43, 3, 44, 45, 46, 47, 48, 3, 49, 50, 51, 3, 52, 3, 53, 54, 55, 47, 56, 3, 57, 58, 59, 3, 60, 42, 61, 62, 63, 3, 64, 38
Offset: 1

Views

Author

Antti Karttunen, Apr 27 2022

Keywords

Comments

Restricted growth sequence transform of the triplet [A003415(n), A003557(n), A000035(n)].
For all i, j:
A305801(i) = A305801(j) => A353520(i) = A353520(j) => a(i) = a(j),
a(i) = a(j) => A007814(i) = A007814(j),
a(i) = a(j) => A344025(i) = A344025(j),
a(i) = a(j) => A353522(i) = A353522(j).

Crossrefs

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A000035(n) = (n%2);
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    A003557(n) = (n/factorback(factorint(n)[, 1]));
    Aux353521(n) = [A003415(n), A003557(n), A000035(n)];
    v353521 = rgs_transform(vector(up_to,n,Aux353521(n)));
    A353521(n) = v353521[n];
Previous Showing 51-60 of 345 results. Next