cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A181819 Prime shadow of n: a(1) = 1; for n>1, if n = Product prime(i)^e(i), then a(n) = Product prime(e(i)).

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 3, 4, 2, 6, 2, 4, 4, 7, 2, 6, 2, 6, 4, 4, 2, 10, 3, 4, 5, 6, 2, 8, 2, 11, 4, 4, 4, 9, 2, 4, 4, 10, 2, 8, 2, 6, 6, 4, 2, 14, 3, 6, 4, 6, 2, 10, 4, 10, 4, 4, 2, 12, 2, 4, 6, 13, 4, 8, 2, 6, 4, 8, 2, 15, 2, 4, 6, 6, 4, 8, 2, 14, 7, 4, 2, 12, 4, 4, 4, 10, 2, 12, 4, 6, 4, 4, 4, 22, 2, 6, 6, 9, 2, 8, 2, 10, 8
Offset: 1

Views

Author

Matthew Vandermast, Dec 07 2010

Keywords

Comments

a(n) depends only on prime signature of n (cf. A025487). a(m) = a(n) iff m and n have the same prime signature, i.e., iff A046523(m) = A046523(n).
Because A046523 (the smallest representative of prime signature of n) and this sequence are functions of each other as A046523(n) = A181821(a(n)) and a(n) = a(A046523(n)), it implies that for all i, j: a(i) = a(j) <=> A046523(i) = A046523(j) <=> A101296(i) = A101296(j), i.e., that equivalence-class-wise this is equal to A101296, and furthermore, applying any function f on this sequence gives us a sequence b(n) = f(a(n)) whose equivalence class partitioning is equal to or coarser than that of A101296, i.e., b is then a sequence that depends only on the prime signature of n (the multiset of exponents of its prime factors), although not necessarily in a very intuitive way. - Antti Karttunen, Apr 28 2022

Examples

			20 = 2^2*5 has the exponents (2,1) in its prime factorization. Accordingly, a(20) = prime(2)*prime(1) = A000040(2)*A000040(1) = 3*2 = 6.
		

Crossrefs

Programs

Formula

From Antti Karttunen, Feb 07 2016: (Start)
a(1) = 1; for n > 1, a(n) = A000040(A067029(n)) * a(A028234(n)).
a(1) = 1; for n > 1, a(n) = A008578(A001511(n)) * a(A064989(n)).
Other identities. For all n >= 1:
a(A124859(n)) = A122111(a(n)) = A238745(n). - from Matthew Vandermast's formulas for the latter sequence.
(End)
a(n) = A246029(A156552(n)). - Antti Karttunen, Oct 15 2016
From Antti Karttunen, Apr 28 & Apr 30 2022: (Start)
A181821(a(n)) = A046523(n) and a(A046523(n)) = a(n). [See comments]
a(n) = A329900(A124859(n)) = A319626(A124859(n)).
a(n) = A246029(A156552(n)).
a(a(n)) = A328830(n).
a(A304660(n)) = n.
a(A108951(n)) = A122111(n).
a(A185633(n)) = A322312(n).
a(A025487(n)) = A181820(n).
a(A276076(n)) = A275735(n) and a(A276086(n)) = A328835(n).
As the sequence converts prime exponents to prime indices, it effects the following mappings:
A001221(a(n)) = A071625(n). [Number of distinct indices --> Number of distinct exponents]
A001222(a(n)) = A001221(n). [Number of indices (i.e., the number of prime factors with multiplicity) --> Number of exponents (i.e., the number of distinct prime factors)]
A056239(a(n)) = A001222(n). [Sum of indices --> Sum of exponents]
A066328(a(n)) = A136565(n). [Sum of distinct indices --> Sum of distinct exponents]
A003963(a(n)) = A005361(n). [Product of indices --> Product of exponents]
A290103(a(n)) = A072411(n). [LCM of indices --> LCM of exponents]
A156061(a(n)) = A290107(n). [Product of distinct indices --> Product of distinct exponents]
A257993(a(n)) = A134193(n). [Index of the least prime not dividing n --> The least number not among the exponents]
A055396(a(n)) = A051904(n). [Index of the least prime dividing n --> Minimal exponent]
A061395(a(n)) = A051903(n). [Index of the greatest prime dividing n --> Maximal exponent]
A008966(a(n)) = A351564(n). [All indices are distinct (i.e., n is squarefree) --> All exponents are distinct]
A007814(a(n)) = A056169(n). [Number of occurrences of index 1 (i.e., the 2-adic valuation of n) --> Number of occurrences of exponent 1]
A056169(a(n)) = A136567(n). [Number of unitary prime divisors --> Number of exponents occurring only once]
A064989(a(n)) = a(A003557(n)) = A295879(n). [Indices decremented after <--> Exponents decremented before]
Other mappings:
A007947(a(n)) = a(A328400(n)) = A329601(n).
A181821(A007947(a(n))) = A328400(n).
A064553(a(n)) = A000005(n) and A000005(a(n)) = A182860(n).
A051903(a(n)) = A351946(n).
A003557(a(n)) = A351944(n).
A258851(a(n)) = A353379(n).
A008480(a(n)) = A309004(n).
a(A325501(n)) = A325507(n) and a(A325502(n)) = A038754(n+1).
a(n!) = A325508(n).
(End)

Extensions

Name "Prime shadow" (coined by Gus Wiseman in A325755) prefixed to the definition by Antti Karttunen, Apr 27 2022

A182860 Number of distinct prime signatures represented among the unitary divisors of n.

Original entry on oeis.org

1, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 4, 2, 3, 3, 2, 2, 4, 2, 4, 3, 3, 2, 4, 2, 3, 2, 4, 2, 4, 2, 2, 3, 3, 3, 3, 2, 3, 3, 4, 2, 4, 2, 4, 4, 3, 2, 4, 2, 4, 3, 4, 2, 4, 3, 4, 3, 3, 2, 6, 2, 3, 4, 2, 3, 4, 2, 4, 3, 4, 2, 4, 2, 3, 4, 4, 3, 4, 2, 4, 2, 3, 2, 6, 3, 3, 3, 4, 2, 6, 3, 4, 3, 3, 3, 4, 2, 4, 4, 3, 2, 4, 2, 4, 4
Offset: 1

Views

Author

Matthew Vandermast, Jan 14 2011

Keywords

Comments

a(n) = number of members m of A025487 such that d(m^k) divides d(n^k) for all values of k. (Here d(n) represents the number of divisors of n, or A000005(n).)
a(n) depends only on prime signature of n (cf. A025487).

Examples

			60 has 8 unitary divisors (1, 3, 4, 5, 12, 15, 20 and 60). Primes 3 and 5 have the same prime signature, as do 12 (2^2*3) and 20 (2^2*5); each of the other four numbers listed is the only unitary divisor of 60 with its particular prime signature.  Since a total of 6 distinct prime signatures appear among the unitary divisors of 60, a(60) = 6.
		

Crossrefs

Programs

  • Mathematica
    Table[Length@ Union@ Map[Sort[FactorInteger[#] /. {p_, e_} /; p > 0 :> If[p == 1, 0, e]] &, Select[Divisors@ n, CoprimeQ[#, n/#] &]], {n, 105}] (* Michael De Vlieger, Jul 19 2017 *)
  • PARI
    A181819(n) = {my(f=factor(n)); prod(k=1, #f~, prime(f[k, 2])); }; \\ From A181819
    A182860(n) = numdiv(A181819(n)); \\ Antti Karttunen, Jul 19 2017

Formula

a(n) = A000005(A181819(n)).
If the canonical factorization of n into prime powers is Product p^e(p), then the formula for d(n^k) is Product_p (ek + 1). (See also A146289, A146290.)
a(n) = A064553(A328830(n)). - Antti Karttunen, Apr 29 2022

A353510 Square array A(n,k), n >= 1, k >= 0, with A(n,0) = n, and for k > 0, A(n,k) = A181819(A(n,k-1)), read by descending antidiagonals.

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 1, 2, 2, 4, 1, 2, 2, 3, 5, 1, 2, 2, 2, 2, 6, 1, 2, 2, 2, 2, 4, 7, 1, 2, 2, 2, 2, 3, 2, 8, 1, 2, 2, 2, 2, 2, 2, 5, 9, 1, 2, 2, 2, 2, 2, 2, 2, 3, 10, 1, 2, 2, 2, 2, 2, 2, 2, 2, 4, 11, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 12, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6, 13, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 14
Offset: 1

Views

Author

Antti Karttunen and Gus Wiseman, Apr 27 2022

Keywords

Comments

The row indexing of this array starts from 1, and the column indexing starts from 0, thus it is read by descending antidiagonals as A(1,0), A(1,1), A(2,0), A(1,2), A(2,1), A(3,0), etc.
A(n, k) gives the k-th prime shadow (the k-fold iterate of A181819) of n.

Examples

			The top left {0..6} x {1..16} corner of the array:
   1, 1, 1, 1, 1, 1, 1,
   2, 2, 2, 2, 2, 2, 2,
   3, 2, 2, 2, 2, 2, 2,
   4, 3, 2, 2, 2, 2, 2,
   5, 2, 2, 2, 2, 2, 2,
   6, 4, 3, 2, 2, 2, 2,
   7, 2, 2, 2, 2, 2, 2,
   8, 5, 2, 2, 2, 2, 2,
   9, 3, 2, 2, 2, 2, 2,
  10, 4, 3, 2, 2, 2, 2,
  11, 2, 2, 2, 2, 2, 2,
  12, 6, 4, 3, 2, 2, 2,
  13, 2, 2, 2, 2, 2, 2,
  14, 4, 3, 2, 2, 2, 2,
  15, 4, 3, 2, 2, 2, 2,
  16, 7, 2, 2, 2, 2, 2,
		

Crossrefs

This is a full square array version of irregular triangle A325239, which after 1, lists the terms on each row only up to the first 2.
Columns 0..2: A000027, A181819, A328830.
Rows 1..2: A000012, A007395.

Programs

  • Mathematica
    f[n_] := If[n == 1, 1, Times @@ Prime[FactorInteger[n][[All, -1]]]]; Table[Function[m, Which[m == 1, a[1, k] = 1, k == 0, a[m, 0] = m, True, Set[a[m, k], f[a[m, k - 1]]]]][n - k + 1], {n, 0, 13}, {k, n, 0, -1}] // Flatten (* Michael De Vlieger, Apr 28 2022 *)
  • PARI
    up_to = 105;
    A181819(n) = factorback(apply(e->prime(e),(factor(n)[,2])));
    A353510sq(n, k) = { while(k, n = A181819(n); k--); (n); };
    A353510list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, forstep(col=a-1,0,-1, i++; if(i > up_to, return(v)); v[i] = A353510sq(a-col,col))); (v); };
    v353510 = A353510list(up_to);
    A353510(n) = v353510[n];
Showing 1-3 of 3 results.