cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A347129 a(n) = A347130(n) / A003557(n), where A347130 is the Dirichlet convolution of the identity function with the arithmetic derivative of n.

Original entry on oeis.org

0, 1, 1, 3, 1, 10, 1, 6, 3, 14, 1, 24, 1, 18, 16, 10, 1, 21, 1, 36, 20, 26, 1, 44, 3, 30, 6, 48, 1, 124, 1, 15, 28, 38, 24, 45, 1, 42, 32, 68, 1, 164, 1, 72, 39, 50, 1, 70, 3, 27, 40, 84, 1, 36, 32, 92, 44, 62, 1, 276, 1, 66, 51, 21, 36, 244, 1, 108, 52, 236, 1, 78, 1, 78, 33, 120, 36, 284, 1, 110, 10, 86, 1, 372, 44
Offset: 1

Views

Author

Antti Karttunen, Aug 23 2021

Keywords

Crossrefs

Programs

Formula

a(n) = A347130(n) / A003557(n).

A327251 Expansion of Sum_{k>=1} psi(k) * x^k / (1 - x^k)^2, where psi = A001615.

Original entry on oeis.org

1, 5, 7, 16, 11, 35, 15, 44, 33, 55, 23, 112, 27, 75, 77, 112, 35, 165, 39, 176, 105, 115, 47, 308, 85, 135, 135, 240, 59, 385, 63, 272, 161, 175, 165, 528, 75, 195, 189, 484, 83, 525, 87, 368, 363, 235, 95, 784, 161, 425, 245, 432, 107, 675, 253, 660, 273
Offset: 1

Views

Author

Ilya Gutkovskiy, Sep 15 2019

Keywords

Comments

Inverse Moebius transform of A322577.
Dirichlet convolution of A001615 with A000027.

Crossrefs

Programs

  • Mathematica
    nmax = 57; CoefficientList[Series[Sum[DirichletConvolve[j, MoebiusMu[j]^2, j, k] x^k/(1 - x^k)^2, {k, 1, nmax}], {x, 0, nmax}], x] // Rest
    f[p_, e_] := p^(e - 1)*((p + 1)*e + p); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Aug 24 2021 *)
  • PARI
    mypsi(n) = n * sumdivmult(n, d, issquarefree(d)/d); \\ A001615
    a(n) = sumdiv(n, d, mypsi(n/d)*d); \\ Michel Marcus, Sep 15 2019

Formula

a(n) = Sum_{d|n} psi(n/d) * d.
a(p) = 2*p + 1, where p is prime.
Multiplicative with a(p^e) = p^(e-1)*((p+1)*e + p). - Antti Karttunen, Aug 24 2021

A347128 a(n) = A018804(n) / A003557(n), where A018804 is Pillai's arithmetical function.

Original entry on oeis.org

1, 3, 5, 4, 9, 15, 13, 5, 7, 27, 21, 20, 25, 39, 45, 6, 33, 21, 37, 36, 65, 63, 45, 25, 13, 75, 9, 52, 57, 135, 61, 7, 105, 99, 117, 28, 73, 111, 125, 45, 81, 195, 85, 84, 63, 135, 93, 30, 19, 39, 165, 100, 105, 27, 189, 65, 185, 171, 117, 180, 121, 183, 91, 8, 225, 315, 133, 132, 225, 351, 141, 35, 145, 219, 65, 148
Offset: 1

Views

Author

Antti Karttunen, Aug 23 2021

Keywords

Crossrefs

Cf. A003557, A018804, A348494 [= gcd(a(n), A342001(n))], A348496 [= gcd(a(n), A347129(n))].
Cf. also A173557, A347127.

Programs

  • Mathematica
    f[p_, e_] := (e*(p - 1)/p + 1)*p^e; A347128[n_] := (Times @@ (f @@@ FactorInteger[n]))/(n/Times @@ (First[Transpose[FactorInteger[n]]]));Table[A347128[n], {n, 1, 76}] (* Robert P. P. McKone, Aug 23 2021, after Amiram Eldar *)
  • PARI
    A347128(n) = { my(f=factor(n)); prod(i=1, #f~, ((f[i, 1]-1)*f[i, 2] + f[i, 1])); };

Formula

Multiplicative with a(p^e) = ((p-1)*e + p).
a(n) = A018804(n) / A003557(n).
Showing 1-3 of 3 results.