cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A347127 a(n) = A327251(n) / A003557(n).

Original entry on oeis.org

1, 5, 7, 8, 11, 35, 15, 11, 11, 55, 23, 56, 27, 75, 77, 14, 35, 55, 39, 88, 105, 115, 47, 77, 17, 135, 15, 120, 59, 385, 63, 17, 161, 175, 165, 88, 75, 195, 189, 121, 83, 525, 87, 184, 121, 235, 95, 98, 23, 85, 245, 216, 107, 75, 253, 165, 273, 295, 119, 616, 123, 315, 165, 20, 297, 805, 135, 280, 329, 825, 143, 121
Offset: 1

Views

Author

Antti Karttunen, Aug 23 2021

Keywords

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p + 1)*e + p; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Aug 24 2021 *)
  • PARI
    A347127(n) = { my(f=factor(n)); prod(i=1, #f~, ((f[i, 1]+1)*f[i, 2] + f[i, 1])); };
    
  • PARI
    A001615(n) = if(1==n,n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
    A003557(n) = (n/factorback(factorint(n)[, 1]));
    A327251(n) = sumdiv(n, d, A001615(n/d)*d);
    A347127(n) = (A327251(n) / A003557(n));

Formula

Multiplicative with a(p^e) = ((p+1)*e + p) for prime p.
a(n) = A327251(n) / A003557(n).

A322577 a(n) = Sum_{d|n} psi(n/d) * phi(d).

Original entry on oeis.org

1, 4, 6, 11, 10, 24, 14, 28, 26, 40, 22, 66, 26, 56, 60, 68, 34, 104, 38, 110, 84, 88, 46, 168, 74, 104, 102, 154, 58, 240, 62, 160, 132, 136, 140, 286, 74, 152, 156, 280, 82, 336, 86, 242, 260, 184, 94, 408, 146, 296, 204, 286, 106, 408, 220, 392, 228, 232, 118, 660
Offset: 1

Views

Author

Ilya Gutkovskiy, Aug 29 2019

Keywords

Comments

Dirichlet convolution of Dedekind psi function (A001615) with Euler totient function (A000010).
Dirichlet convolution of A008966 with A018804.
Dirichlet convolution of A038040 with A271102.

Crossrefs

Cf. A327251 (inverse Möbius transform), A347092 (Dirichlet inverse), A347093 (sum with it), A347135.

Programs

  • Maple
    f:= proc(n) local t;
      mul((t[2]+1)*t[1]^t[2] - (t[2]-1)*t[1]^(t[2]-2), t = ifactors(n)[2])
    end proc:
    map(f, [$1..100]); # Robert Israel, Sep 01 2019
  • Mathematica
    Table[Sum[DirichletConvolve[j, MoebiusMu[j]^2, j, n/d] EulerPhi[d], {d, Divisors[n]}], {n, 1, 60}]
    f[p_, e_] := (e + 1)*p^e - (e - 1)*p^(e - 2); a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* Amiram Eldar, Oct 26 2020 *)
  • PARI
    seq(n) = {dirmul(vector(n, n, eulerphi(n)), vector(n, n, n * sumdivmult(n, d, issquarefree(d)/d)))} \\ Andrew Howroyd, Aug 29 2019
    
  • PARI
    A001615(n) = if(1==n,n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1)));
    A322577(n) = sumdiv(n,d,A001615(n/d)*eulerphi(d)); \\ Antti Karttunen, Apr 03 2022

Formula

Dirichlet g.f.: zeta(s-1)^2 / zeta(2*s).
a(p) = 2*p, where p is prime.
Sum_{k=1..n} a(k) ~ 45*n^2*(2*Pi^4*log(n) - Pi^4 + 4*gamma*Pi^4 - 360*zeta'(4)) / (2*Pi^8), where gamma is the Euler-Mascheroni constant A001620 and for zeta'(4) see A261506. - Vaclav Kotesovec, Aug 31 2019
a(p^k) = (k+1)*p^k - (k-1)*p^(k-2) where p is prime. - Robert Israel, Sep 01 2019
a(n) = Sum_{k=1..n} psi(gcd(n,k)). - Ridouane Oudra, Nov 29 2019
a(n) = Sum_{k=1..n} psi(n/gcd(n,k))*phi(gcd(n,k))/phi(n/gcd(n,k)). - Richard L. Ollerton, May 07 2021

A348982 a(n) = Sum_{d|n} psi(n/d) * A322582(d), where psi is Dedekind psi (A001615), A322582(n) = n - A003958(n), and A003958 is fully multiplicative with a(p) = (p-1).

Original entry on oeis.org

0, 1, 1, 6, 1, 11, 1, 22, 9, 15, 1, 52, 1, 19, 17, 66, 1, 69, 1, 76, 21, 27, 1, 176, 15, 31, 51, 100, 1, 145, 1, 178, 29, 39, 25, 288, 1, 43, 33, 264, 1, 189, 1, 148, 123, 51, 1, 508, 21, 145, 41, 172, 1, 339, 33, 352, 45, 63, 1, 632, 1, 67, 159, 450, 37, 277, 1, 220, 53, 265, 1, 924, 1, 79, 175, 244, 37, 321
Offset: 1

Views

Author

Antti Karttunen, Nov 08 2021

Keywords

Comments

Dirichlet convolution of A001615 with A322582.

Crossrefs

Programs

  • Mathematica
    f1[p_, e_] := (p + 1)*p^(e - 1); psi[1] = 1; psi[n_] := Times @@ f1 @@@ FactorInteger[n]; f2[p_, e_] := (p - 1)^e; s[1] = 1; s[n_] := Times @@ f2 @@@ FactorInteger[n]; a[n_] := DivisorSum[n, (# - s[#])*psi[n/#] &]; Array[a, 100] (* Amiram Eldar, Nov 08 2021 *)
  • PARI
    A001615(n) = if(1==n,n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
    A003958(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]--); factorback(f); };
    A322582(n) = (n-A003958(n));
    A348982(n) = sumdiv(n,d,A001615(n/d)*A322582(d));

Formula

a(n) = Sum_{d|n} A001615(n/d) * A322582(d).
For all n >= 1, a(n) <= A347132(n) <= A349142(n).
a(n) = A327251(n) - A349132(n). - Antti Karttunen, Nov 14 2021

A349132 a(n) = Sum_{d|n} psi(d) * A003958(n/d), where A003958 is fully multiplicative with a(p) = (p-1), and psi is Dedekind psi function, A001615.

Original entry on oeis.org

1, 4, 6, 10, 10, 24, 14, 22, 24, 40, 22, 60, 26, 56, 60, 46, 34, 96, 38, 100, 84, 88, 46, 132, 70, 104, 84, 140, 58, 240, 62, 94, 132, 136, 140, 240, 74, 152, 156, 220, 82, 336, 86, 220, 240, 184, 94, 276, 140, 280, 204, 260, 106, 336, 220, 308, 228, 232, 118, 600, 122, 248, 336, 190, 260, 528, 134, 340, 276, 560
Offset: 1

Views

Author

Antti Karttunen, Nov 09 2021

Keywords

Comments

Dirichlet convolution of A003958 with Dedekind psi function, A001615.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p + 1)*p^e - p*(p - 1)^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 09 2021 *)
  • PARI
    A001615(n) = if(1==n,n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1)));
    A003958(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]--); factorback(f); };
    A349132(n) = sumdiv(n,d,A001615(d)*A003958(n/d));

Formula

a(n) = Sum_{d|n} A001615(d) * A003958(n/d).
a(n) = A327251(n) - A348982(n).
For all n >= 1, a(n) <= A349172(n).
Multiplicative with a(p^e) = (p+1)*p^e - p*(p-1)^e. - Amiram Eldar, Nov 09 2021

A349142 a(n) = Sum_{d|n} psi(n/d) * A348507(d), where psi is Dedekind psi (A001615), A348507(n) = A003959(n) - n, and A003959 is fully multiplicative with a(p) = (p+1).

Original entry on oeis.org

0, 1, 1, 8, 1, 13, 1, 40, 11, 17, 1, 80, 1, 21, 19, 164, 1, 99, 1, 112, 23, 29, 1, 364, 17, 33, 77, 144, 1, 191, 1, 604, 31, 41, 27, 528, 1, 45, 35, 524, 1, 243, 1, 208, 165, 53, 1, 1424, 23, 187, 43, 240, 1, 597, 35, 684, 47, 65, 1, 1072, 1, 69, 209, 2084, 39, 347, 1, 304, 55, 327, 1, 2244, 1, 81, 221, 336, 39, 399
Offset: 1

Views

Author

Antti Karttunen, Nov 08 2021

Keywords

Comments

Dirichlet convolution of A001615 with A348507.

Crossrefs

Programs

  • Mathematica
    f1[p_, e_] := (p + 1)*p^(e - 1); psi[1] = 1; psi[n_] := Times @@ f1 @@@ FactorInteger[n]; f2[p_, e_] := (p + 1)^e; s[1] = 1; s[n_] := Times @@ f2 @@@ FactorInteger[n]; a[n_] := DivisorSum[n, (s[#] - #)*psi[n/#] &]; Array[a, 100] (* Amiram Eldar, Nov 08 2021 *)
  • PARI
    A001615(n) = if(1==n,n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1))); \\ After code in A001615
    A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
    A348507(n) = (A003959(n) - n);
    A349142(n) = sumdiv(n,d,A001615(d)*A348507(n/d));

Formula

a(n) = Sum_{d|n} A001615(n/d) * A348507(d).
For all n >= 1, a(n) >= A347132(n) >= A348982(n).
a(n) = A349172(n) - A327251(n). - Antti Karttunen, Nov 14 2021

A349172 a(n) = Sum_{d|n} psi(d) * A003959(n/d), where A003959 is fully multiplicative with a(p) = (p+1), and psi is Dedekind psi function, A001615.

Original entry on oeis.org

1, 6, 8, 24, 12, 48, 16, 84, 44, 72, 24, 192, 28, 96, 96, 276, 36, 264, 40, 288, 128, 144, 48, 672, 102, 168, 212, 384, 60, 576, 64, 876, 192, 216, 192, 1056, 76, 240, 224, 1008, 84, 768, 88, 576, 528, 288, 96, 2208, 184, 612, 288, 672, 108, 1272, 288, 1344, 320, 360, 120, 2304, 124, 384, 704, 2724, 336, 1152, 136
Offset: 1

Views

Author

Antti Karttunen, Nov 09 2021

Keywords

Comments

Dirichlet convolution of A001615 with A003959.

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p + 2)*(p + 1)^e - (p + 1)*p^e; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Nov 09 2021 *)
  • PARI
    A001615(n) = if(1==n,n, my(f=factor(n)); prod(i=1, #f~, f[i, 1]^f[i, 2] + f[i, 1]^(f[i, 2]-1)));
    A003959(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]++); factorback(f); };
    A349172(n) = sumdiv(n,d,A001615(d)*A003959(n/d));

Formula

a(n) = Sum_{d|n} A001615(d) * A003959(n/d).
a(n) = A327251(n) + A349142(n).
For all n >= 1, a(n) >= A349132(n).
Multiplicative with a(p^e) = (p+2)*(p+1)^e - (p+1)*p^e. - Amiram Eldar, Nov 09 2021
Showing 1-6 of 6 results.