A307126
Expansion of e.g.f. log(1 + log(1 + x*exp(x))).
Original entry on oeis.org
0, 1, 0, -2, 5, 3, -88, 362, 534, -17363, 103354, 175690, -9218328, 80446715, 46936658, -10553663682, 136009808336, -210505566343, -22766371152222, 418488315816586, -1679396876267976, -82907733267235305, 2070045795782097506, -13611715282931011890, -463120892871268874832
Offset: 0
-
a:=series(log(1+log(1+x*exp(x))),x=0,25): seq(n!*coeff(a,x,n),n=0..24); # Paolo P. Lava, Apr 03 2019
-
nmax = 24; CoefficientList[Series[Log[1 + Log[1 + x Exp[x]]], {x, 0, nmax}], x] Range[0, nmax]!
-
my(x = 'x + O('x^30)); Vec(serlaplace(log(1 + log(1 + x*exp(x))))) \\ Michel Marcus, Mar 26 2019
A331559
E.g.f.: -log(1 + x + log(1 - x)).
Original entry on oeis.org
0, 1, 2, 9, 44, 280, 2064, 17738, 172528, 1880856, 22686960, 300193872, 4323063744, 67323469200, 1127433161568, 20205636981840, 385897245967104, 7824675262660608, 167885148101916672, 3800289634376282496, 90513807325761507840, 2262830879094971399424
Offset: 1
-
nmax = 22; CoefficientList[Series[-Log[1 + x + Log[1 - x]], {x, 0, nmax}], x] Range[0, nmax]! // Rest
A331798
E.g.f.: -log(1 - x) / ((1 - x) * (1 + log(1 - x))).
Original entry on oeis.org
0, 1, 5, 29, 204, 1714, 16862, 190826, 2447512, 35136696, 558727872, 9754239648, 185546362416, 3820734689472, 84687887312688, 2010622152615504, 50908186083448320, 1369376758488222336, 38998680958184088960, 1172297572938013827456, 37092793335394301708544
Offset: 0
-
nmax = 20; CoefficientList[Series[-Log[1 - x]/((1 - x) (1 + Log[1 - x])), {x, 0, nmax}], x] Range[0, nmax]!
A007526[n_] := n! Sum[1/k!, {k, 0, n - 1}]; a[n_] := Sum[Abs[StirlingS1[n, k]] A007526[k], {k, 0, n}]; Table[a[n], {n, 0, 20}]
A007840[n_] := Sum[Abs[StirlingS1[n, k]] k!, {k, 0, n}]; a[n_] := Sum[Binomial[n, k] k! HarmonicNumber[k] A007840[n - k], {k, 1, n}]; Table[a[n], {n, 0, 20}]
A336436
a(0) = 0; a(n) = ((n-1)!)^3 + (1/n) * Sum_{k=1..n-1} (binomial(n,k) * (n-k-1)!)^3 * k * a(k).
Original entry on oeis.org
0, 1, 5, 107, 6020, 701424, 146665984, 50005133576, 25952660212352, 19469692241358336, 20277424971134267904, 28384315863525074792448, 52002222667299924427689984, 121958564445078246232792363008, 359324017883943122680656621023232
Offset: 0
-
a[0] = 0; a[n_] := a[n] = ((n - 1)!)^3 + (1/n) Sum[(Binomial[n, k] (n - k - 1)!)^3 k a[k], {k, 1, n - 1}]; Table[a[n], {n, 0, 14}]
nmax = 14; CoefficientList[Series[-Log[1 - Sum[x^k/k^3, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!^3
A363115
Expansion of e.g.f. log(1 - log( sqrt(1-2*x) )).
Original entry on oeis.org
0, 1, 1, 4, 22, 168, 1616, 18800, 256432, 4012288, 70825344, 1392214272, 30157260288, 713680180224, 18319344307200, 506934586748928, 15043324048398336, 476540007615725568, 16050059458251915264, 572710950848334200832, 21582629580640554123264, 856552661738538476765184
Offset: 0
E.g.f.: A(x) = x + x^2/2! + 4*x^3/3! + 22*x^4/4! + 168*x^5/5! + 1616*x^6/6! + 18800*x^7/7! + 256432*x^8/8! + 4012288*x^9/9! + ...
where
exp(A(x)) = 1 + x + 2*x^2/2 + 4*x^3/3 + 8*x^4/4 + 16*x^5/5 + ... + 2^(n-1)*x^n/n + ...
-
{a(n) = n!*polcoeff( log((1 - log(sqrt(1-2*x +x*O(x^n))))),n)}
for(n=0,20,print1(a(n),", "))
-
{a(n) = (-1)^(n-1) * sum(k=1,n, 2^(n-k) * (k-1)! * stirling(n, k, 1) )}
for(n=0,20,print1(a(n),", "))
-
{a(n) = if (n<1, 0, 2^(n-1)*(n-1)! - sum(k=1, n-1, binomial(n-1, k)*(k-1)! * 2^(k-1) * a(n-k)))}
for(n=0,20,print1(a(n),", "))
A363116
Expansion of e.g.f. log(1 - (1/3)*log(1-3*x)).
Original entry on oeis.org
0, 1, 2, 11, 93, 1068, 15486, 271206, 5566086, 130982328, 3476230344, 102709363392, 3343387479840, 118880973126576, 4584247231485312, 190548125567321328, 8492669888285758896, 404023626910206388224, 20434095445804056842112, 1094849162137482139541376
Offset: 0
E.g.f.: A(x) = x + 2*x^2/2! + 11*x^3/3! + 93*x^4/4! + 1068*x^5/5! + 15486*x^6/6! + 271206*x^7/7! + 5566086*x^8/8! + 130982328*x^9/9! + ...
where
exp(A(x)) = 1 + x + 3*x^2/2 + 9*x^3/3 + 27*x^4/4 + 81*x^5/5 + ... + 3^(n-1)*x^n/n + ...
-
{a(n) = n!*polcoeff( log((1 - (1/3)*log(1-3*x +x*O(x^n) ))),n)}
for(n=0,20,print1(a(n),", "))
-
{a(n) = (-1)^(n-1) * sum(k=1,n, 3^(n-k) * (k-1)! * stirling(n, k, 1) )}
for(n=0,20,print1(a(n),", "))
-
{a(n) = if (n<1, 0, 3^(n-1)*(n-1)! - sum(k=1, n-1, binomial(n-1, k)*(k-1)! * 3^(k-1) * a(n-k)))}
for(n=0,20,print1(a(n),", "))
A089225
Triangle T(n,k) read by rows, defined by T(n,k) = (n-k)*T(n-1,k)+Sum(k=1..n, T(n-1,k)); T(1,1) = 1, T(1,k)= 0 if k >1.
Original entry on oeis.org
1, 2, 1, 7, 4, 3, 35, 22, 17, 14, 228, 154, 122, 102, 88, 1834, 1310, 1060, 898, 782, 694, 17582, 13128, 10818, 9272, 8142, 7272, 6578, 195866, 151560, 126882, 109880, 97218, 87336, 79370, 72792, 2487832, 1981824, 1682196, 1470304, 1309776
Offset: 1
n=4: M = |1,1,1,1|1, 2,1, 1|1, 1, 3, 1|1, 1, 1, 4|
T(4, 1) = permanent of |2, 1, 1|1, 3, 1|1, 1, 4| = 26+5+4 = 35
T(4, 2) = permanent of |1, 1, 1|1, 3, 1|1, 1, 4| = 13+5+4 = 22
T(4, 3) = permanent of |1, 1, 1|1, 2, 1|1, 1, 4| = 9+5+3 = 17
T(4, 4) = permanent of |1, 1, 1|1, 2, 1|1, 1, 3| = 7+4+3 = 14
Comments