cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-12 of 12 results.

A212267 Array A(i,j) read by antidiagonals: A(i,j) is the (2*i-1)-th derivative of tan(tan(tan(...tan(x)))) nested j times evaluated at 0.

Original entry on oeis.org

1, 1, 2, 1, 4, 16, 1, 6, 72, 272, 1, 8, 168, 2896, 7936, 1, 10, 304, 10672, 203904, 353792, 1, 12, 480, 26400, 1198080, 22112000, 22368256, 1, 14, 696, 52880, 4071040, 208521728, 3412366336, 1903757312, 1, 16, 952, 92912, 10373760, 976629760, 51874413568, 709998153728, 209865342976
Offset: 1

Views

Author

John M. Campbell, May 12 2012

Keywords

Comments

The determinant of the n X n such matrix has a closed form given in the Mathematica code below.
Rows appear to be given by polynomials (see formula section).

Examples

			Array A(i,j) begins:
.      1,        1,         1,         1,          1, ...
.      2,        4,         6,         8,         10, ...
.     16,       72,       168,       304,        480, ...
.    272,     2896,     10672,     26400,      52880, ...
.   7936,   203904,   1198080,   4071040,   10373760, ...
. 353792, 22112000, 208521728, 976629760, 3172514560, ...
Evaluate the (2*3-1)th derivate of tan(tan(tan(x))) at 0, which is 168. Thus A(3,3)=168.
		

Crossrefs

Columns j=1-3 give: A000182, A003718, A003720.

Programs

  • Maple
    A:= (i, j)-> (D@@(2*i-1))(tan@@j)(0):
    seq(seq(A(i, 1+d-i), i=1..d), d=1..8); # Alois P. Heinz, May 13 2012
  • Mathematica
    A[a_, b_] :=
      A[a, b] =
       Array[D[Nest[Tan, x, #2], {x, 2*#1 - 1}] /. x -> 0 &, {a, b}];
    Print[A[7, 7] // MatrixForm];
    Table2 = {};
    k = 1;
    While[k < 8, Table1 = {};
      i = 1;
      j = k;
      While[0 < j,
       AppendTo[Table1, First[Take[First[Take[A[7, 7], {i, i}]], {j, j}]]];
       j = j - 1;
       i = i + 1];
      AppendTo[Table2, Table1];
      k++];
    Print[Flatten[Table2]];
    Print[Table[Det[A[n, n]], {n, 1, 7}]];
    Table[(2^(11/12 +
           1/2 (5 + 3 (-1 + n)) (-1 + n)) 3^(-(1/2) (-1 +
             n) n) Glaisher^3 \[Pi]^-n BarnesG[1/2 + n] BarnesG[1 + n] BarnesG[3/2 + n])/E^(1/4), {n, 1, 7}]

Formula

A(i,j) = ((d/dx)^(2i-1) tan^j(x))_{x=0}.
Third row: n*(5*n - 1)*4 = 8*A005476(n).
Fourth row: 8/3*n*(11 - 84*n + 175*n^2).

Extensions

More terms from Alois P. Heinz, May 13 2012

A302453 a(n) = coefficient of x^(2*n-1) in the n-th iteration (n-fold self-composition) of e.g.f. tan(x).

Original entry on oeis.org

1, 4, 168, 26400, 10373760, 8226518272, 11524607732736, 26047611675267072, 88935060882222120960, 436394080487109570265088, 2959343413232671759344861184, 26874522377891724867898947141632, 318464577992023576681854032513335296, 4818779071094868918454887699722367139840
Offset: 1

Views

Author

Ilya Gutkovskiy, Apr 08 2018

Keywords

Comments

a(n) = coefficient of x^(2*n-1) in the n-th iteration (n-fold self-composition) of e.g.f. tanh(x) (absolute values).

Examples

			The initial coefficients of successive iterations of e.g.f. A(x) = tan(x) (odd powers only) are as follows:
n = 1: (1),  2,   16,    272,      7936,  ... e.g.f. A(x)
n = 2:  1,  (4),  72,   2896,    203904,  ... e.g.f. A(A(x))
n = 3:  1,   6, (168), 10672,   1198080,  ... e.g.f. A(A(A(x)))
n = 4:  1,   8,  304, (26400),  4071040,  ... e.g.f. A(A(A(A(x))))
n = 5:  1,  10,  480,  52880, (10373760), ... e.g.f. A(A(A(A(A(x)))))
...
More explicitly, the successive iterations of e.g.f. A(x) = tan(x) begin:
tan(x) = x/1! + 2*x^3/3! + 16*x^5/5! + 272*x^7/7! + 7936*x^9/9! + ...
tan(tan(x)) = x/1! + 4*x^3/3! + 72*x^5/5! + 2896*x^7/7! + 203904*x^9/9! + ...
tan(tan(tan(x))) = x/1! + 6*x^3/3! + 168*x^5/5! + 10672*x^7/7! + 1198080*x^9/9! + ...
tan(tan(tan(tan(x)))) = x/1! + 8*x^3/3! + 304*x^5/5! + 26400*x^7/7! + 4071040*x^9/9! + ...
tan(tan(tan(tan(tan(x))))) = x/1! + 10*x^3/3! + 480*x^5/5! + 52880*x^7/7! + 10373760*x^9/9! + ...
		

Crossrefs

Programs

  • Mathematica
    Table[(2 n - 1)! SeriesCoefficient[Nest[Function[x, Tan[x]], x, n], {x, 0, 2 n - 1}], {n, 14}]
Previous Showing 11-12 of 12 results.